Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -63,15 +63,21 @@ def extract_leaderboard_stats(game_name: str) -> pd.DataFrame:
|
|
63 |
|
64 |
if game_name == "Total Performance":
|
65 |
query = "SELECT game_name, COUNT(DISTINCT episode) AS games_played, " \
|
66 |
-
"
|
67 |
"FROM game_results GROUP BY game_name"
|
68 |
df = pd.read_sql_query(query, conn)
|
69 |
else:
|
70 |
query = "SELECT COUNT(DISTINCT episode) AS games_played, " \
|
71 |
-
"
|
72 |
"FROM game_results WHERE game_name = ?"
|
73 |
df = pd.read_sql_query(query, conn, params=(game_name,))
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# Calculate win rate against random bot
|
76 |
vs_random_query = """
|
77 |
SELECT COUNT(*) FROM game_results
|
@@ -87,6 +93,7 @@ def extract_leaderboard_stats(game_name: str) -> pd.DataFrame:
|
|
87 |
|
88 |
df["agent_name"] = model_name
|
89 |
df["agent_type"] = agent_type
|
|
|
90 |
df["vs_random"] = round(vs_random_rate, 2)
|
91 |
|
92 |
all_stats.append(df)
|
@@ -95,7 +102,7 @@ def extract_leaderboard_stats(game_name: str) -> pd.DataFrame:
|
|
95 |
leaderboard_df = pd.concat(all_stats, ignore_index=True) if all_stats else pd.DataFrame()
|
96 |
|
97 |
if leaderboard_df.empty:
|
98 |
-
leaderboard_df = pd.DataFrame(columns=["LLM Model", "# games", "
|
99 |
|
100 |
return leaderboard_df
|
101 |
|
@@ -113,7 +120,7 @@ with gr.Blocks() as interface:
|
|
113 |
gr.Markdown("# LLM Model Leaderboard\nTrack performance across different games!")
|
114 |
available_games = get_available_games()
|
115 |
leaderboard_game_dropdown = gr.Dropdown(available_games, label="Select Game", value="Total Performance")
|
116 |
-
leaderboard_table = gr.Dataframe(headers=["LLM Model", "# games", "
|
117 |
generate_button = gr.Button("Generate Leaderboard JSON")
|
118 |
download_component = gr.File(label="Download Leaderboard JSON")
|
119 |
refresh_button = gr.Button("Refresh Leaderboard")
|
|
|
63 |
|
64 |
if game_name == "Total Performance":
|
65 |
query = "SELECT game_name, COUNT(DISTINCT episode) AS games_played, " \
|
66 |
+
"SUM(reward) AS total_rewards " \
|
67 |
"FROM game_results GROUP BY game_name"
|
68 |
df = pd.read_sql_query(query, conn)
|
69 |
else:
|
70 |
query = "SELECT COUNT(DISTINCT episode) AS games_played, " \
|
71 |
+
"SUM(reward) AS total_rewards " \
|
72 |
"FROM game_results WHERE game_name = ?"
|
73 |
df = pd.read_sql_query(query, conn, params=(game_name,))
|
74 |
|
75 |
+
# Fetch average generation time from moves table
|
76 |
+
gen_time_query = """
|
77 |
+
SELECT AVG(generation_time) FROM moves WHERE game_name = ?
|
78 |
+
"""
|
79 |
+
avg_gen_time = conn.execute(gen_time_query, (game_name,)).fetchone()[0] or 0
|
80 |
+
|
81 |
# Calculate win rate against random bot
|
82 |
vs_random_query = """
|
83 |
SELECT COUNT(*) FROM game_results
|
|
|
93 |
|
94 |
df["agent_name"] = model_name
|
95 |
df["agent_type"] = agent_type
|
96 |
+
df["avg_generation_time"] = round(avg_gen_time, 2)
|
97 |
df["vs_random"] = round(vs_random_rate, 2)
|
98 |
|
99 |
all_stats.append(df)
|
|
|
102 |
leaderboard_df = pd.concat(all_stats, ignore_index=True) if all_stats else pd.DataFrame()
|
103 |
|
104 |
if leaderboard_df.empty:
|
105 |
+
leaderboard_df = pd.DataFrame(columns=["LLM Model", "# games", "total rewards", "avg gen time", "win-rate", "vs Random"])
|
106 |
|
107 |
return leaderboard_df
|
108 |
|
|
|
120 |
gr.Markdown("# LLM Model Leaderboard\nTrack performance across different games!")
|
121 |
available_games = get_available_games()
|
122 |
leaderboard_game_dropdown = gr.Dropdown(available_games, label="Select Game", value="Total Performance")
|
123 |
+
leaderboard_table = gr.Dataframe(headers=["LLM Model", "# games", "total rewards", "avg gen time", "win-rate", "vs Random"])
|
124 |
generate_button = gr.Button("Generate Leaderboard JSON")
|
125 |
download_component = gr.File(label="Download Leaderboard JSON")
|
126 |
refresh_button = gr.Button("Refresh Leaderboard")
|