|
|
|
|
|
import os |
|
import chromadb |
|
from dotenv import load_dotenv |
|
import json |
|
|
|
|
|
from langchain_core.documents import Document |
|
from langchain_core.runnables import RunnablePassthrough |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain.prompts import ChatPromptTemplate |
|
from langchain.chains.query_constructor.base import AttributeInfo |
|
from langchain.retrievers.self_query.base import SelfQueryRetriever |
|
from langchain.retrievers.document_compressors import LLMChainExtractor, CrossEncoderReranker |
|
from langchain.retrievers import ContextualCompressionRetriever |
|
|
|
|
|
from langchain_community.vectorstores import Chroma |
|
from langchain_community.document_loaders import PyPDFDirectoryLoader, PyPDFLoader |
|
from langchain_community.cross_encoders import HuggingFaceCrossEncoder |
|
from langchain_experimental.text_splitter import SemanticChunker |
|
from langchain.text_splitter import ( |
|
CharacterTextSplitter, |
|
RecursiveCharacterTextSplitter |
|
) |
|
from langchain_core.tools import tool |
|
from langchain.agents import create_tool_calling_agent, AgentExecutor |
|
from langchain_core.prompts import ChatPromptTemplate |
|
|
|
|
|
from langchain_openai import ChatOpenAI |
|
from langchain_openai import AzureOpenAIEmbeddings, AzureChatOpenAI |
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
|
|
|
|
from llama_parse import LlamaParse |
|
from llama_index.core import Settings, SimpleDirectoryReader |
|
|
|
|
|
from langgraph.graph import StateGraph, END, START |
|
|
|
|
|
from pydantic import BaseModel |
|
|
|
|
|
from typing import Dict, List, Tuple, Any, TypedDict |
|
|
|
|
|
import numpy as np |
|
from groq import Groq |
|
from mem0 import MemoryClient |
|
import streamlit as st |
|
from datetime import datetime |
|
|
|
|
|
|
|
api_key = os.getenv("API_KEY") |
|
endpoint = os.getenv("API_BASE") |
|
llama_api_key = os.getenv("GROQ_API_KEY") |
|
MEM0_API_KEY = os.getenv("MEM0_API_KEY") |
|
|
|
|
|
print("API_KEY:", "π set" if api_key else "β missing") |
|
print("API_BASE:", endpoint or "β missing") |
|
print("GROQ_API_KEY:", "π set" if llama_api_key else "β missing") |
|
print("MEM0_API_KEY:", "π set" if MEM0_API_KEY else "β missing") |
|
|
|
|
|
|
|
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction( |
|
api_base=endpoint, |
|
api_key=api_key, |
|
model_name='text-embedding-ada-002' |
|
) |
|
|
|
|
|
|
|
|
|
embedding_model = OpenAIEmbeddings( |
|
openai_api_base=endpoint, |
|
openai_api_key=api_key, |
|
model='text-embedding-ada-002' |
|
) |
|
|
|
|
|
|
|
llm = ChatOpenAI( |
|
openai_api_base=endpoint, |
|
openai_api_key=api_key, |
|
model="gpt-4o-mini", |
|
streaming=False |
|
) |
|
|
|
|
|
|
|
Settings.llm = llm |
|
Settings.embedding = embedding_model |
|
|
|
|
|
|
|
class AgentState(TypedDict): |
|
query: str |
|
expanded_query: str |
|
context: List[Dict[str, Any]] |
|
response: str |
|
precision_score: float |
|
groundedness_score: float |
|
groundedness_loop_count: int |
|
precision_loop_count: int |
|
feedback: str |
|
query_feedback: str |
|
groundedness_check: bool |
|
loop_max_iter: int |
|
|
|
def expand_query(state): |
|
""" |
|
Expands the user query to improve retrieval of nutrition disorder-related information. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the user query. |
|
|
|
Returns: |
|
Dict: The updated state with the expanded query. |
|
""" |
|
print("---------Expanding Query---------") |
|
|
|
system_message = """You are a nutrition-focused query expander. Take the userβs original question about nutritional disorders and broaden itβadding relevant synonyms, related conditions, and subtopicsβwithout changing its intent, so that the retrieval step can find the most useful documents.""" |
|
|
|
|
|
expand_prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_message), |
|
("user", "Expand this query: {query} using the feedback: {query_feedback}") |
|
|
|
]) |
|
|
|
chain = expand_prompt | llm | StrOutputParser() |
|
expanded_query = chain.invoke({"query": state['query'], "query_feedback":state["query_feedback"]}) |
|
print("expanded_query", expanded_query) |
|
state["expanded_query"] = expanded_query |
|
return state |
|
|
|
|
|
|
|
vector_store = Chroma( |
|
collection_name="nutritional_hypotheticals", |
|
persist_directory="./nutritional_db", |
|
embedding_function=embedding_model |
|
|
|
) |
|
|
|
|
|
retriever = vector_store.as_retriever( |
|
search_type='similarity', |
|
search_kwargs={'k': 3} |
|
) |
|
|
|
def retrieve_context(state): |
|
""" |
|
Retrieves context from the vector store using the expanded or original query. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the query and expanded query. |
|
|
|
Returns: |
|
Dict: The updated state with the retrieved context. |
|
""" |
|
print("---------retrieve_context---------") |
|
|
|
query = state['expanded_query'] |
|
|
|
|
|
|
|
docs = retriever.invoke(query) |
|
|
|
print("Retrieved documents:", docs) |
|
|
|
|
|
context= [ |
|
{ |
|
"content": doc.page_content, |
|
"metadata": doc.metadata |
|
} |
|
for doc in docs |
|
] |
|
|
|
state['context'] = context |
|
print("Extracted context with metadata:", context) |
|
|
|
return state |
|
|
|
|
|
|
|
def craft_response(state: Dict) -> Dict: |
|
""" |
|
Generates a response using the retrieved context, focusing on nutrition disorders. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the query and retrieved context. |
|
|
|
Returns: |
|
Dict: The updated state with the generated response. |
|
""" |
|
print("---------craft_response---------") |
|
|
|
system_message = """ |
|
You are an expert Nutrition Disorder Specialist. Use only the retrieved context to craft a clear, accurate, and empathetic answer to the userβs query about nutritional disorders. |
|
""" |
|
|
|
response_prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_message), |
|
("user", "Query: {query}\nContext: {context}\n\nfeedback: {feedback}") |
|
]) |
|
|
|
chain = response_prompt | llm |
|
response = chain.invoke({ |
|
"query": state['query'], |
|
"context": "\n".join([doc["content"] for doc in state['context']]), |
|
|
|
"feedback": state['feedback'] |
|
}) |
|
state['response'] = response |
|
print("intermediate response: ", response) |
|
|
|
return state |
|
|
|
|
|
|
|
def score_groundedness(state: Dict) -> Dict: |
|
""" |
|
Checks whether the response is grounded in the retrieved context. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the response and context. |
|
|
|
Returns: |
|
Dict: The updated state with the groundedness score. |
|
""" |
|
print("---------check_groundedness---------") |
|
|
|
system_message = """ |
|
You are a factuality evaluator. Given a piece of context and a proposed response, assign a groundedness score between 0 (no support in the context) and 1 (fully supported by the context). |
|
""" |
|
|
|
groundedness_prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_message), |
|
("user", "Context: {context}\nResponse: {response}\n\nGroundedness score:") |
|
]) |
|
|
|
chain = groundedness_prompt | llm | StrOutputParser() |
|
groundedness_score = float(chain.invoke({ |
|
"context": "\n".join([doc["content"] for doc in state['context']]), |
|
|
|
"response": state['response'] |
|
})) |
|
print("groundedness_score: ", groundedness_score) |
|
state['groundedness_loop_count'] += 1 |
|
print("#########Groundedness Incremented###########") |
|
state['groundedness_score'] = groundedness_score |
|
|
|
return state |
|
|
|
|
|
|
|
def check_precision(state: Dict) -> Dict: |
|
""" |
|
Checks whether the response precisely addresses the userβs query. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the query and response. |
|
|
|
Returns: |
|
Dict: The updated state with the precision score. |
|
""" |
|
print("---------check_precision---------") |
|
|
|
system_message = """You are a precision evaluator. Given a user query and an answer, assign a precision score from 0 (does not address the query) to 1 (fully answers the query).""" |
|
|
|
precision_prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_message), |
|
("user", "Query: {query}\nResponse: {response}\n\nPrecision score:") |
|
]) |
|
|
|
chain = precision_prompt | llm | StrOutputParser() |
|
precision_score = float(chain.invoke({ |
|
"query": state['query'], |
|
"response":state['response'] |
|
})) |
|
state['precision_score'] = precision_score |
|
print("precision_score:", precision_score) |
|
state['precision_loop_count'] +=1 |
|
print("#########Precision Incremented###########") |
|
return state |
|
|
|
|
|
|
|
def refine_response(state: Dict) -> Dict: |
|
""" |
|
Suggests improvements for the generated response. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the query and response. |
|
|
|
Returns: |
|
Dict: The updated state with response refinement suggestions. |
|
""" |
|
print("---------refine_response---------") |
|
|
|
|
|
system_message = """ |
|
You are a response-refinement assistant. Given a user query and an existing answer, suggest concrete improvementsβadding missing details, correcting errors, and clarifying wording to make it as accurate and complete as possible. |
|
""" |
|
|
|
refine_response_prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_message), |
|
("user", "Query: {query}\nResponse: {response}\n\n" |
|
"What improvements can be made to enhance accuracy and completeness?") |
|
]) |
|
|
|
chain = refine_response_prompt | llm| StrOutputParser() |
|
|
|
|
|
feedback = f"Previous Response: {state['response']}\nSuggestions: {chain.invoke({'query': state['query'], 'response': state['response']})}" |
|
print("feedback: ", feedback) |
|
print(f"State: {state}") |
|
state['feedback'] = feedback |
|
return state |
|
|
|
|
|
|
|
def refine_query(state: Dict) -> Dict: |
|
""" |
|
Suggests improvements for the expanded query. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the query and expanded query. |
|
|
|
Returns: |
|
Dict: The updated state with query refinement suggestions. |
|
""" |
|
print("---------refine_query---------") |
|
|
|
system_message = """ |
|
You are a queryβrefinement assistant. Given an original user question and its expanded form, suggest concrete ways to make the search query more precise, comprehensive, and effective for retrieving nutritionβdisorder information. |
|
""" |
|
|
|
refine_query_prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_message), |
|
("user", "Original Query: {query}\nExpanded Query: {expanded_query}\n\n" |
|
"What improvements can be made for a better search?") |
|
]) |
|
|
|
chain = refine_query_prompt | llm | StrOutputParser() |
|
|
|
|
|
query_feedback = f"Previous Expanded Query: {state['expanded_query']}\nSuggestions: {chain.invoke({'query': state['query'], 'expanded_query': state['expanded_query']})}" |
|
print("query_feedback: ", query_feedback) |
|
print(f"Groundedness loop count: {state['groundedness_loop_count']}") |
|
state['query_feedback'] = query_feedback |
|
return state |
|
|
|
|
|
|
|
def should_continue_groundedness(state): |
|
"""Decides if groundedness is sufficient or needs improvement.""" |
|
print("---------should_continue_groundedness---------") |
|
print("groundedness loop count: ", state['groundedness_loop_count']) |
|
if state['groundedness_score'] >= 0.8: |
|
print("Moving to precision") |
|
return "check_precision" |
|
else: |
|
if state["groundedness_loop_count"] > state['loop_max_iter']: |
|
return "max_iterations_reached" |
|
else: |
|
print(f"---------Groundedness Score Threshold Not met. Refining Response-----------") |
|
return "refine_response" |
|
|
|
|
|
def should_continue_precision(state: Dict) -> str: |
|
"""Decides if precision is sufficient or needs improvement.""" |
|
print("---------should_continue_precision---------") |
|
print("precision loop count: ", state['precision_loop_count']) |
|
if state['precision_score'] >= 0.8: |
|
return "pass" |
|
else: |
|
if state['precision_loop_count'] > state['loop_max_iter']: |
|
return "max_iterations_reached" |
|
else: |
|
print(f"---------Precision Score Threshold Not met. Refining Query-----------") |
|
return "refine_query" |
|
|
|
|
|
|
|
|
|
def max_iterations_reached(state: Dict) -> Dict: |
|
"""Handles the case when the maximum number of iterations is reached.""" |
|
print("---------max_iterations_reached---------") |
|
"""Handles the case when the maximum number of iterations is reached.""" |
|
response = "I'm unable to refine the response further. Please provide more context or clarify your question." |
|
state['response'] = response |
|
return state |
|
|
|
|
|
|
|
from langgraph.graph import END, StateGraph, START |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_workflow() -> StateGraph: |
|
"""Creates the updated workflow for the AI nutrition agent.""" |
|
workflow = StateGraph(START) |
|
|
|
|
|
workflow.add_node("expand_query", expand_query) |
|
workflow.add_node("retrieve_context", retrieve_context) |
|
workflow.add_node("craft_response", craft_response) |
|
workflow.add_node("score_groundedness", score_groundedness) |
|
workflow.add_node("refine_response", refine_response) |
|
workflow.add_node("check_precision", check_precision) |
|
workflow.add_node("refine_query", refine_query) |
|
workflow.add_node("max_iterations_reached", max_iterations_reached) |
|
|
|
|
|
workflow.add_edge(START, "expand_query") |
|
workflow.add_edge("expand_query", "retrieve_context") |
|
workflow.add_edge("retrieve_context", "craft_response") |
|
workflow.add_edge("craft_response", "score_groundedness") |
|
|
|
|
|
workflow.add_conditional_edges( |
|
"score_groundedness", |
|
should_continue_groundedness, |
|
{ |
|
"check_precision": "check_precision", |
|
"refine_response": "refine_response", |
|
"max_iterations_reached": "max_iterations_reached" |
|
} |
|
) |
|
workflow.add_edge("refine_response", "craft_response") |
|
|
|
|
|
workflow.add_conditional_edges( |
|
"check_precision", |
|
should_continue_precision, |
|
{ |
|
"pass": END, |
|
"refine_query": "refine_query", |
|
"max_iterations_reached": "max_iterations_reached" |
|
} |
|
) |
|
workflow.add_edge("refine_query", "expand_query") |
|
|
|
workflow.add_edge("max_iterations_reached", END) |
|
|
|
return workflow |
|
|
|
|
|
|
|
WORKFLOW_APP = create_workflow().compile() |
|
@tool |
|
def agentic_rag(query: str): |
|
""" |
|
Runs the RAG-based agent with conversation history for context-aware responses. |
|
|
|
Args: |
|
query (str): The current user query. |
|
|
|
Returns: |
|
Dict[str, Any]: The updated state with the generated response and conversation history. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs = { |
|
"query": query, |
|
"expanded_query": query, |
|
"context": [], |
|
"response": "", |
|
"precision_score": 0.0, |
|
"groundedness_score": 0.0, |
|
"groundedness_loop_count": 0, |
|
"precision_loop_count": 0, |
|
"feedback": "", |
|
"query_feedback": "", |
|
"loop_max_iter": 3 |
|
} |
|
|
|
|
|
output = WORKFLOW_APP.invoke(inputs) |
|
|
|
return output |
|
|
|
|
|
|
|
llama_guard_client = Groq(api_key=llama_api_key) |
|
|
|
def filter_input_with_llama_guard(user_input, model="llama-guard-3-8b"): |
|
""" |
|
Filters user input using Llama Guard to ensure it is safe. |
|
|
|
Parameters: |
|
- user_input: The input provided by the user. |
|
- model: The Llama Guard model to be used for filtering (default is "llama-guard-3-8b"). |
|
|
|
Returns: |
|
- The filtered and safe input. |
|
""" |
|
try: |
|
|
|
response = llama_guard_client.chat.completions.create( |
|
messages=[{"role": "user", "content": user_input}], |
|
model=model, |
|
) |
|
|
|
return response.choices[0].message.content.strip() |
|
except Exception as e: |
|
print(f"Error with Llama Guard: {e}") |
|
return None |
|
|
|
|
|
|
|
|
|
class NutritionBot: |
|
def __init__(self): |
|
""" |
|
Initialize the NutritionBot class, setting up memory, the LLM client, tools, and the agent executor. |
|
""" |
|
|
|
|
|
self.memory = MemoryClient(api_key=MEM0_API_KEY) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from openai import OpenAI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.client = ChatOpenAI( |
|
model="gpt-4o-mini", |
|
openai_api_key=api_key, |
|
openai_api_base=endpoint, |
|
temperature=0 |
|
) |
|
|
|
tools = [agentic_rag] |
|
|
|
|
|
system_prompt = """You are a caring and knowledgeable Medical Support Agent, specializing in nutrition disorder-related guidance. Your goal is to provide accurate, empathetic, and tailored nutritional recommendations while ensuring a seamless customer experience. |
|
Guidelines for Interaction: |
|
Maintain a polite, professional, and reassuring tone. |
|
Show genuine empathy for customer concerns and health challenges. |
|
Reference past interactions to provide personalized and consistent advice. |
|
Engage with the customer by asking about their food preferences, dietary restrictions, and lifestyle before offering recommendations. |
|
Ensure consistent and accurate information across conversations. |
|
If any detail is unclear or missing, proactively ask for clarification. |
|
Always use the agentic_rag tool to retrieve up-to-date and evidence-based nutrition insights. |
|
Keep track of ongoing issues and follow-ups to ensure continuity in support. |
|
Your primary goal is to help customers make informed nutrition decisions that align with their health conditions and personal preferences. |
|
|
|
""" |
|
|
|
|
|
prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_prompt), |
|
("human", "{input}"), |
|
("placeholder", "{agent_scratchpad}") |
|
]) |
|
|
|
|
|
agent = create_tool_calling_agent(self.client, tools, prompt) |
|
|
|
|
|
self.agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) |
|
|
|
|
|
def store_customer_interaction(self, user_id: str, message: str, response: str, metadata: Dict = None): |
|
""" |
|
Store customer interaction in memory for future reference. |
|
|
|
Args: |
|
user_id (str): Unique identifier for the customer. |
|
message (str): Customer's query or message. |
|
response (str): Chatbot's response. |
|
metadata (Dict, optional): Additional metadata for the interaction. |
|
""" |
|
if metadata is None: |
|
metadata = {} |
|
|
|
|
|
metadata["timestamp"] = datetime.now().isoformat() |
|
|
|
|
|
conversation = [ |
|
{"role": "user", "content": message}, |
|
{"role": "assistant", "content": response} |
|
] |
|
|
|
|
|
self.memory.add( |
|
conversation, |
|
user_id=user_id, |
|
output_format="v1.1", |
|
metadata=metadata |
|
) |
|
|
|
|
|
def get_relevant_history(self, user_id: str, query: str) -> List[Dict]: |
|
""" |
|
Retrieve past interactions relevant to the current query. |
|
|
|
Args: |
|
user_id (str): Unique identifier for the customer. |
|
query (str): The customer's current query. |
|
|
|
Returns: |
|
List[Dict]: A list of relevant past interactions. |
|
""" |
|
return self.memory.search( |
|
query=query, |
|
user_id=user_id, |
|
limit=5 |
|
) |
|
|
|
|
|
def handle_customer_query(self, user_id: str, query: str) -> str: |
|
""" |
|
Process a customer's query and provide a response, taking into account past interactions. |
|
|
|
Args: |
|
user_id (str): Unique identifier for the customer. |
|
query (str): Customer's query. |
|
|
|
Returns: |
|
str: Chatbot's response. |
|
""" |
|
|
|
|
|
relevant_history = self.get_relevant_history(user_id, query) |
|
|
|
|
|
context = "Previous relevant interactions:\n" |
|
for memory in relevant_history: |
|
context += f"Customer: {memory['memory']}\n" |
|
context += f"Support: {memory['memory']}\n" |
|
context += "---\n" |
|
|
|
|
|
print("Context: ", context) |
|
|
|
|
|
prompt = f""" |
|
Context: |
|
{context} |
|
|
|
Current customer query: {query} |
|
|
|
Provide a helpful response that takes into account any relevant past interactions. |
|
""" |
|
|
|
|
|
response = self.agent_executor.invoke({"input": prompt}) |
|
|
|
|
|
self.store_customer_interaction( |
|
user_id=user_id, |
|
message=query, |
|
response=response["output"], |
|
metadata={"type": "support_query"} |
|
) |
|
|
|
|
|
return response['output'] |
|
|
|
|
|
|
|
def nutrition_disorder_streamlit(): |
|
""" |
|
A Streamlit-based UI for the Nutrition Disorder Specialist Agent. |
|
""" |
|
st.title("Nutrition Disorder Specialist") |
|
st.write("Ask me anything about nutrition disorders, symptoms, causes, treatments, and more.") |
|
st.write("Type 'exit' to end the conversation.") |
|
|
|
|
|
if 'chat_history' not in st.session_state: |
|
st.session_state.chat_history = [] |
|
if 'user_id' not in st.session_state: |
|
st.session_state.user_id = None |
|
|
|
|
|
if st.session_state.user_id is None: |
|
with st.form("login_form", clear_on_submit=True): |
|
user_id = st.text_input("Please enter your name to begin:") |
|
submit_button = st.form_submit_button("Login") |
|
if submit_button and user_id: |
|
st.session_state.user_id = user_id |
|
st.session_state.chat_history.append({ |
|
"role": "assistant", |
|
"content": f"Welcome, {user_id}! How can I help you with nutrition disorders today?" |
|
}) |
|
st.session_state.login_submitted = True |
|
if st.session_state.get("login_submitted", False): |
|
st.session_state.pop("login_submitted") |
|
st.rerun() |
|
else: |
|
|
|
for message in st.session_state.chat_history: |
|
with st.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
|
|
|
|
|
|
user_query = st.chat_input("Type your question here (or 'exit' to end)...") |
|
if user_query: |
|
if user_query.lower() == "exit": |
|
st.session_state.chat_history.append({"role": "user", "content": "exit"}) |
|
with st.chat_message("user"): |
|
st.write("exit") |
|
goodbye_msg = "Goodbye! Feel free to return if you have more questions about nutrition disorders." |
|
st.session_state.chat_history.append({"role": "assistant", "content": goodbye_msg}) |
|
with st.chat_message("assistant"): |
|
st.write(goodbye_msg) |
|
st.session_state.user_id = None |
|
st.rerun() |
|
return |
|
|
|
st.session_state.chat_history.append({"role": "user", "content": user_query}) |
|
with st.chat_message("user"): |
|
st.write(user_query) |
|
|
|
|
|
|
|
filtered_result = filter_input_with_llama_guard(user_query) |
|
filtered_result = filtered_result.replace("\n", " ") |
|
|
|
|
|
|
|
if filtered_result in ["safe", "unsafe S7", "unsafe S6"]: |
|
|
|
try: |
|
if 'chatbot' not in st.session_state: |
|
|
|
st.session_state.chatbot = NutritionBot() |
|
|
|
response = st.session_state.chatbot.handle_customer_query(st.session_state.user_id, user_query) |
|
|
|
st.write(response) |
|
st.session_state.chat_history.append({"role": "assistant", "content": response}) |
|
except Exception as e: |
|
error_msg = f"Sorry, I encountered an error while processing your query. Please try again. Error: {str(e)}" |
|
st.write(error_msg) |
|
st.session_state.chat_history.append({"role": "assistant", "content": error_msg}) |
|
else: |
|
inappropriate_msg = "I apologize, but I cannot process that input as it may be inappropriate. Please try again." |
|
st.write(inappropriate_msg) |
|
st.session_state.chat_history.append({"role": "assistant", "content": inappropriate_msg}) |
|
|
|
if __name__ == "__main__": |
|
nutrition_disorder_streamlit() |
|
|