Spaces:
Sleeping
Sleeping
# Import necessary libraries | |
import numpy as np | |
import joblib # For loading the serialized model | |
import pandas as pd # For data manipulation | |
from flask import Flask, request, jsonify # For creating the Flask API | |
# Initialize the Flask application | |
forecast_predictor_api = Flask("Forecast Predictor") | |
# Load the trained machine learning model | |
model = joblib.load("SuperKartbest_xgb.joblib") | |
def home(): | |
return "Welcome to the Sales Prediction API!" | |
def predict_single(): | |
# Get the JSON data from the request body | |
product_data = request.get_json() | |
# Extract relevant features from the JSON data | |
sample = { | |
'Product_Weight': product_data['Product_Weight'], | |
'Product_Allocated_Area': product_data['Product_Allocated_Area'], | |
'Product_MRP': product_data['Product_MRP'], | |
'Store_Establishment_Year': product_data['Store_Establishment_Year'], | |
'Product_Sugar_Content_No Sugar': product_data['Product_Sugar_Content_No Sugar'], | |
'Product_Sugar_Content_Regular': product_data['Product_Sugar_Content_Regular'], | |
'Product_Sugar_Content_reg': product_data['Product_Sugar_Content_reg'], | |
'Product_Type_Breads': product_data['Product_Type_Breads'], | |
'Product_Type_Breakfast': product_data['Product_Type_Breakfast'], | |
'Product_Type_Canned': product_data['Product_Type_Canned'], | |
'Product_Type_Dairy': product_data['Product_Type_Dairy'], | |
'Product_Type_Frozen Foods': product_data['Product_Type_Frozen Foods'], | |
'Product_Type_Fruits and Vegetables': product_data['Product_Type_Fruits and Vegetables'], | |
'Product_Type_Hard Drinks': product_data['Product_Type_Hard Drinks'], | |
'Product_Type_Health and Hygiene': product_data['Product_Type_Health and Hygiene'], | |
'Product_Type_Household': product_data['Product_Type_Household'], | |
'Product_Type_Meat': product_data['Product_Type_Meat'], | |
'Product_Type_Others': product_data['Product_Type_Others'], | |
'Product_Type_Seafood': product_data['Product_Type_Seafood'], | |
'Product_Type_Snack Foods': product_data['Product_Type_Snack Foods'], | |
'Product_Type_Soft Drinks': product_data['Product_Type_Soft Drinks'], | |
'Product_Type_Starchy Foods': product_data['Product_Type_Starchy Foods'], | |
'Store_Size_Medium': product_data['Store_Size_Medium'], | |
'Store_Size_Small': product_data['Store_Size_Small'], | |
'Store_Location_City_Type_Tier 2': product_data['Store_Location_City_Type_Tier 2'], | |
'Store_Location_City_Type_Tier 3': product_data['Store_Location_City_Type_Tier 3'], | |
'Store_Type_Food Mart': product_data['Store_Type_Food Mart'], | |
'Store_Type_Supermarket Type1': product_data['Store_Type_Supermarket Type1'], | |
'Store_Type_Supermarket Type2': product_data['Store_Type_Supermarket Type2'] | |
} | |
# Convert the extracted data into a Pandas DataFrame | |
input_data = pd.DataFrame([sample]) | |
# Make prediction (get log_price) | |
predicted_price = model.predict(input_data)[0] | |
# Convert predicted_price to Python float | |
predicted_price = round(float(predicted_price), 2) | |
# The conversion above is needed as we convert the model prediction (log price) to actual price using np.exp, which returns predictions as NumPy float32 values. | |
# When we send this value directly within a JSON response, Flask's jsonify function encounters a datatype error | |
# Return the actual price | |
return jsonify({'Predicted Price (in dollars)': predicted_price}) | |
# Run the Flask application in debug mode if this script is executed directly | |
if __name__ == '__main__': | |
forecast_predictor_api.run(debug=True) | |