Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load the model and tokenizer | |
model_name = "m3rg-iitd/llamat-3-chat" #"gpt2" # You can replace this with any model of your choice | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
st.title("Chatbot with LlaMat") | |
st.write("Ask me anything about material!") | |
# Initialize session state for chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Function to generate response | |
def generate_response(prompt): | |
inputs = tokenizer.encode(prompt, return_tensors="pt") | |
outputs = model.generate(inputs, max_length=100, num_return_sequences=1) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# User input | |
user_input = st.text_input("You: ", "") | |
if user_input: | |
st.session_state.messages.append({"role": "user", "content": user_input}) | |
response = generate_response(user_input) | |
st.session_state.messages.append({"role": "bot", "content": response}) | |
# Display chat history | |
for message in st.session_state.messages: | |
if message["role"] == "user": | |
st.write(f"You: {message['content']}") | |
else: | |
st.write(f"Bot: {message['content']}") |