chatbox / app.py
phani50101's picture
new version
c18e7fd verified
import time
import gradio as gr
import pandas as pd
import openvino_genai as ov_genai
from huggingface_hub import snapshot_download
from threading import Lock, Event
import os
import numpy as np
import requests
from PIL import Image
from io import BytesIO
import cpuinfo
import openvino as ov
import librosa
from googleapiclient.discovery import build
import gc
from PyPDF2 import PdfReader
from docx import Document
import textwrap
from queue import Queue, Empty
from concurrent.futures import ThreadPoolExecutor
from typing import Generator
import warnings
from transformers import pipeline # Added for Whisper
# Suppress specific OpenVINO deprecation warning
warnings.filterwarnings("ignore", category=DeprecationWarning, module="openvino.runtime")
# Google API configuration
GOOGLE_API_KEY = "AIzaSyAo-1iW5MEZbc53DlEldtnUnDaYuTHUDH4"
GOOGLE_CSE_ID = "3027bedf3c88a4efb"
DEFAULT_MAX_TOKENS = 100
DEFAULT_NUM_IMAGES = 1
MAX_HISTORY_TURNS = 3
MAX_TOKENS_LIMIT = 1000
class UnifiedAISystem:
def __init__(self):
self.pipe_lock = Lock()
self.current_df = None
self.mistral_pipe = None
self.internvl_pipe = None
self.whisper_pipe = None
self.current_document_text = None
self.generation_executor = ThreadPoolExecutor(max_workers=3)
self.initialize_models()
def initialize_models(self):
"""Initialize all required models"""
# Download models if not exists
model_paths = {
"mistral-ov": "OpenVINO/mistral-7b-instruct-v0.1-int8-ov",
"internvl-ov": "OpenVINO/InternVL2-1B-int8-ov"
# Removed distil-whisper download since we're using transformers version
}
for local_dir, repo_id in model_paths.items():
if not os.path.exists(local_dir):
snapshot_download(repo_id=repo_id, local_dir=local_dir)
# CPU-specific configuration
cpu_features = cpuinfo.get_cpu_info()['flags']
config_properties = {}
if 'avx512' in cpu_features:
config_properties["ENFORCE_BF16"] = "YES"
elif 'avx2' in cpu_features:
config_properties["INFERENCE_PRECISION_HINT"] = "f32"
# Initialize Mistral model with updated configuration
self.mistral_pipe = ov_genai.LLMPipeline(
"mistral-ov",
device="CPU",
PERFORMANCE_HINT="THROUGHPUT",
**config_properties
)
def load_data(self, file_path):
"""Load student data from file"""
try:
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.csv':
self.current_df = pd.read_csv(file_path)
elif file_ext in ['.xlsx', '.xls']:
self.current_df = pd.read_excel(file_path)
else:
return False, "❌ Unsupported file format. Please upload a .csv or .xlsx file."
return True, f"βœ… Loaded {len(self.current_df)} records from {os.path.basename(file_path)}"
except Exception as e:
return False, f"❌ Error loading file: {str(e)}"
def extract_text_from_document(self, file_path):
"""Extract text from PDF or DOCX documents"""
text = ""
try:
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == '.pdf':
with open(file_path, 'rb') as file:
pdf_reader = PdfReader(file)
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
elif file_ext == '.docx':
doc = Document(file_path)
for para in doc.paragraphs:
text += para.text + "\n"
else:
return False, "❌ Unsupported document format. Please upload PDF or DOCX."
# Clean and format text
text = text.replace('\x0c', '') # Remove form feed characters
text = textwrap.dedent(text) # Remove common leading whitespace
self.current_document_text = text
return True, f"βœ… Extracted text from {os.path.basename(file_path)}"
except Exception as e:
return False, f"❌ Error processing document: {str(e)}"
def generate_text_stream(self, prompt: str, max_tokens: int) -> Generator[str, None, None]:
"""Unified text generation with queued token streaming"""
start_time = time.time()
response_queue = Queue()
completion_event = Event()
error = [None] # Use list to capture exception from thread
optimized_config = ov_genai.GenerationConfig(
max_new_tokens=max_tokens,
temperature=0.3,
top_p=0.9,
streaming=True,
streaming_interval=5 # Batch tokens in groups of 5
)
def callback(tokens): # Accepts multiple tokens
response_queue.put("".join(tokens))
return ov_genai.StreamingStatus.RUNNING
def generate():
try:
with self.pipe_lock:
self.mistral_pipe.generate(prompt, optimized_config, callback)
except Exception as e:
error[0] = str(e)
finally:
completion_event.set()
# Submit generation task to executor
self.generation_executor.submit(generate)
accumulated = []
token_count = 0
last_gc = time.time()
while not completion_event.is_set() or not response_queue.empty():
if error[0]:
yield f"❌ Error: {error[0]}"
print(f"Stream generation time: {time.time() - start_time:.2f} seconds")
return
try:
token_batch = response_queue.get(timeout=0.1)
accumulated.append(token_batch)
token_count += len(token_batch)
yield "".join(accumulated)
# Periodic garbage collection
if time.time() - last_gc > 2.0:
gc.collect()
last_gc = time.time()
except Empty:
continue
print(f"Generated {token_count} tokens in {time.time() - start_time:.2f} seconds "
f"({token_count/(time.time() - start_time):.2f} tokens/sec)")
yield "".join(accumulated)
def analyze_student_data(self, query, max_tokens=500):
"""Analyze student data using AI with streaming"""
if not query or not query.strip():
yield "⚠️ Please enter a valid question"
return
if self.current_df is None:
yield "⚠️ Please upload and load a student data file first"
return
data_summary = self._prepare_data_summary(self.current_df)
prompt = f"""You are an expert education analyst. Analyze the following student performance data:
{data_summary}
Question: {query}
Please include:
1. Direct answer to the question
2. Relevant statistics
3. Key insights
4. Actionable recommendations
Format the output with clear headings"""
# Use unified streaming generator
yield from self.generate_text_stream(prompt, max_tokens)
def _prepare_data_summary(self, df):
"""Summarize the uploaded data"""
summary = f"Student performance data with {len(df)} rows and {len(df.columns)} columns.\n"
summary += "Columns: " + ", ".join(df.columns) + "\n"
summary += "First 3 rows:\n" + df.head(3).to_string(index=False)
return summary
def analyze_image(self, image, url, prompt):
"""Analyze image with InternVL model (synchronous, no streaming)"""
try:
if image is not None:
image_source = image
elif url and url.startswith(("http://", "https://")):
response = requests.get(url)
image_source = Image.open(BytesIO(response.content)).convert("RGB")
else:
return "⚠️ Please upload an image or enter a valid URL"
# Convert to OpenVINO tensor
image_data = np.array(image_source.getdata()).reshape(
1, image_source.size[1], image_source.size[0], 3
).astype(np.byte)
image_tensor = ov.Tensor(image_data)
# Lazy initialize InternVL
if self.internvl_pipe is None:
self.internvl_pipe = ov_genai.VLMPipeline("internvl-ov", device="CPU")
with self.pipe_lock:
self.internvl_pipe.start_chat()
output = self.internvl_pipe.generate(prompt, image=image_tensor, max_new_tokens=100)
self.internvl_pipe.finish_chat()
# Ensure output is string
return str(output)
except Exception as e:
return f"❌ Error: {str(e)}"
def process_audio(self, data, sr):
"""Process audio data for speech recognition"""
try:
# Convert to mono
if data.ndim > 1:
data = np.mean(data, axis=1) # Simple mono conversion
else:
data = data
# Convert to float32 and normalize
data = data.astype(np.float32)
max_val = np.max(np.abs(data)) + 1e-7
data /= max_val
# Simple noise reduction
data = np.clip(data, -0.5, 0.5)
# Trim silence
energy = np.abs(data)
threshold = np.percentile(energy, 25) # Simple threshold
mask = energy > threshold
indices = np.where(mask)[0]
if len(indices) > 0:
start = max(0, indices[0] - 1000)
end = min(len(data), indices[-1] + 1000)
data = data[start:end]
# Resample if needed using simpler method
if sr != 16000:
# Calculate new length
new_length = int(len(data) * 16000 / sr)
# Linear interpolation for resampling
data = np.interp(
np.linspace(0, len(data)-1, new_length),
np.arange(len(data)),
data
)
sr = 16000
return data
except Exception as e:
print(f"Audio processing error: {e}")
return np.array([], dtype=np.float32)
def transcribe(self, audio):
"""Transcribe audio using OpenAI Whisper-small model"""
if audio is None:
return ""
sr, data = audio
# Skip if audio is too short (less than 0.5 seconds)
if len(data)/sr < 0.5:
return ""
try:
processed = self.process_audio(data, sr)
# Skip if audio is still too short after processing
if len(processed) < 8000: # 0.5 seconds at 16kHz
return ""
# Lazy initialize Whisper - USING TRANSFORMERS PIPELINE
if self.whisper_pipe is None:
self.whisper_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
device="cpu" # Use CPU for consistency
)
# Use transformers pipeline for transcription
result = self.whisper_pipe(processed, return_timestamps=False)
return result["text"]
except Exception as e:
print(f"Transcription error: {e}")
return "❌ Transcription failed - please try again"
def generate_lesson_plan(self, topic, duration, additional_instructions="", max_tokens=1200):
"""Generate a lesson plan based on document content"""
if not topic:
yield "⚠️ Please enter a lesson topic"
return
if not self.current_document_text:
yield "⚠️ Please upload and process a document first"
return
prompt = f"""As an expert educator, create a focused lesson plan using the provided content.
**Core Requirements:**
1. TOPIC: {topic}
2. TOTAL DURATION: {duration} periods
3. ADDITIONAL INSTRUCTIONS: {additional_instructions or 'None'}
**Content Summary:**
{self.current_document_text[:2500]}... [truncated]
**Output Structure:**
1. PERIOD ALLOCATION (Break topic into {duration} logical segments):
- Period 1: [Subtopic 1]
- Period 2: [Subtopic 2]
...
2. LEARNING OBJECTIVES (Max 3 bullet points)
3. TEACHING ACTIVITIES (One engaging method per period)
4. RESOURCES (Key materials from document)
5. ASSESSMENT (Simple checks for understanding)
6. PAGE REFERENCES (Specific source pages)
**Key Rules:**
- Strictly divide content into exactly {duration} periods
- Prioritize document content over creativity
- Keep objectives measurable
- Use only document resources
- Make page references specific"""
# Use unified streaming generator
yield from self.generate_text_stream(prompt, max_tokens)
def fetch_images(self, query: str, num: int = DEFAULT_NUM_IMAGES) -> list:
"""Fetch unique images by requesting different result pages"""
if num <= 0:
return []
try:
service = build("customsearch", "v1", developerKey=GOOGLE_API_KEY)
image_links = []
seen_urls = set() # To track unique URLs
# Start from different positions to get unique images
for start_index in range(1, num * 2, 2):
if len(image_links) >= num:
break
res = service.cse().list(
q=query,
cx=GOOGLE_CSE_ID,
searchType="image",
num=1,
start=start_index
).execute()
if "items" in res and res["items"]:
item = res["items"][0]
# Skip duplicates
if item["link"] not in seen_urls:
image_links.append(item["link"])
seen_urls.add(item["link"])
return image_links[:num]
except Exception as e:
print(f"Error in image fetching: {e}")
return []
# Initialize global object
ai_system = UnifiedAISystem()
# CSS styles with improved output box
css = """
.gradio-container {
background-color: #121212;
color: #fff;
}
.user-msg, .bot-msg {
padding: 12px 16px;
border-radius: 18px;
margin: 8px 0;
line-height: 1.5;
border: none;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.user-msg {
background: linear-gradient(135deg, #4a5568, #2d3748);
color: white;
margin-left: 20%;
border-bottom-right-radius: 5px;
border: none;
}
.bot-msg {
background: linear-gradient(135deg, #2d3748, #1a202c);
color: white;
margin-right: 20%;
border-bottom-left-radius: 5px;
border: none;
}
/* Remove top border from chat messages */
.user-msg, .bot-msg {
border-top: none !important;
}
/* Remove borders from chat container */
.chatbot > div {
border: none !important;
}
.chatbot .message {
border: none !important;
}
/* Improve scrollbar */
.chatbot::-webkit-scrollbar {
width: 8px;
}
.chatbot::-webkit-scrollbar-track {
background: #2a2a2a;
border-radius: 4px;
}
.chatbot::-webkit-scrollbar-thumb {
background: #4a5568;
border-radius: 4px;
}
.chatbot::-webkit-scrollbar-thumb:hover {
background: #5a6578;
}
/* Rest of the CSS remains the same */
.gradio-container {
background-color: #121212;
color: #fff;
}
.upload-box {
background-color: #333;
border-radius: 8px;
padding: 16px;
margin-bottom: 16px;
}
#question-input {
background-color: #333;
color: #fff;
border-radius: 8px;
padding: 12px;
border: 1px solid #555;
}
.mode-checkbox {
background-color: #333;
color: #fff;
border: 1px solid #555;
border-radius: 8px;
padding: 10px;
margin: 5px;
}
.slider-container {
margin-top: 20px;
padding: 15px;
border-radius: 10px;
background-color: #2a2a2a;
}
.system-info {
background-color: #7B9BDB;
padding: 15px;
border-radius: 8px;
margin: 15px 0;
border-left: 4px solid #1890ff;
}
.chat-image {
cursor: pointer;
transition: transform 0.2s;
max-height: 100px;
margin: 4px;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.chat-image:hover {
transform: scale(1.05);
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
}
.modal {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: rgba(0,0,0,0.8);
display: none;
z-index: 1000;
cursor: zoom-out;
}
.modal-content {
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
max-width: 90%;
max-height: 90%;
background: white;
padding: 10px;
border-radius: 12px;
}
.modal-img {
width: auto;
height: auto;
max-width: 100%;
max-height: 100%;
border-radius: 8px;
}
.typing-indicator {
display: inline-block;
position: relative;
width: 40px;
height: 20px;
}
.typing-dot {
display: inline-block;
width: 6px;
height: 6px;
border-radius: 50%;
background-color: #fff;
position: absolute;
animation: typing 1.4s infinite ease-in-out;
}
.typing-dot:nth-child(1) {
left: 0;
animation-delay: 0s;
}
.typing-dot:nth-child(2) {
left: 12px;
animation-delay: 0.2s;
}
.typing-dot:nth-child(3) {
left: 24px;
animation-delay: 0.4s;
}
@keyframes typing {
0%, 60%, 100% { transform: translateY(0); }
30% { transform: translateY(-5px); }
}
.lesson-plan {
background: linear-gradient(135deg, #1a202c, #2d3748);
padding: 15px;
border-radius: 12px;
margin: 10px 0;
border-left: 4px solid #4a9df0;
}
.lesson-section {
margin-bottom: 15px;
padding-bottom: 10px;
border-bottom: 1px solid #4a5568;
}
.lesson-title {
font-size: 1.2em;
font-weight: bold;
color: #4a9df0;
margin-bottom: 8px;
}
.page-ref {
background-color: #4a5568;
padding: 3px 8px;
border-radius: 4px;
font-size: 0.9em;
display: inline-block;
margin: 3px;
}
"""
# Create Gradio interface
with gr.Blocks(css=css, title="Unified EDU Assistant") as demo:
gr.Markdown("# πŸ€– Unified EDU Assistant by Phanindra Reddy K")
# System info banner
gr.HTML("""
<div class="system-info">
<strong>Multi-Modal AI Assistant</strong>
<ul>
<li>Text & Voice Chat with Mistral-7B</li>
<li>Image Understanding with InternVL</li>
<li>Student Data Analysis</li>
<li>Visual Search with Google Images</li>
<li>Lesson Planning from Documents</li>
</ul>
</div>
""")
# Modal for image preview
modal_html = """
<div class="modal" id="imageModal" onclick="this.style.display='none'">
<div class="modal-content">
<img class="modal-img" id="expandedImg">
</div>
</div>
<script>
function showImage(url) {
document.getElementById('expandedImg').src = url;
document.getElementById('imageModal').style.display = 'block';
}
</script>
"""
gr.HTML(modal_html)
chat_state = gr.State([])
with gr.Column(scale=2, elem_classes="chat-container"):
chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False,
avatar_images=("user.png", "bot.png"), show_label=False)
# Mode selection
with gr.Row():
chat_mode = gr.Checkbox(label="πŸ’¬ General Chat", value=True, elem_classes="mode-checkbox")
student_mode = gr.Checkbox(label="πŸŽ“ Student Analytics", value=False, elem_classes="mode-checkbox")
image_mode = gr.Checkbox(label="πŸ–ΌοΈ Image Analysis", value=False, elem_classes="mode-checkbox")
lesson_mode = gr.Checkbox(label="πŸ“ Lesson Planning", value=False, elem_classes="mode-checkbox")
# Dynamic input fields (General Chat by default)
with gr.Column() as chat_inputs:
include_images = gr.Checkbox(label="Include Visuals", value=True)
user_input = gr.Textbox(
placeholder="Type your question here...",
label="Your Question",
container=False,
elem_id="question-input"
)
with gr.Row():
max_tokens = gr.Slider(
minimum=10,
maximum=1000,
value=100,
step=10,
label="Response Length (Tokens)"
)
num_images = gr.Slider(
minimum=0,
maximum=5,
value=1,
step=1,
label="Number of Images",
visible=True
)
# Student inputs
with gr.Column(visible=False) as student_inputs:
file_upload = gr.File(label="CSV/Excel File", file_types=[".csv", ".xlsx"], type="filepath")
student_question = gr.Textbox(
placeholder="Ask questions about student data...",
label="Your Question",
elem_id="question-input"
)
student_status = gr.Markdown("No file loaded")
# Image analysis inputs
with gr.Column(visible=False) as image_inputs:
image_upload = gr.Image(type="pil", label="Upload Image")
image_url = gr.Textbox(
label="OR Enter Image URL",
placeholder="https://example.com/image.jpg",
elem_id="question-input"
)
image_question = gr.Textbox(
placeholder="Ask questions about the image...",
label="Your Question",
elem_id="question-input"
)
# Lesson planning inputs
with gr.Column(visible=False) as lesson_inputs:
gr.Markdown("### πŸ“š Lesson Planning")
doc_upload = gr.File(
label="Upload Curriculum Document (PDF/DOCX)",
file_types=[".pdf", ".docx"],
type="filepath"
)
doc_status = gr.Markdown("No document uploaded")
with gr.Row():
topic_input = gr.Textbox(
label="Lesson Topic",
placeholder="Enter the main topic for the lesson plan"
)
duration_input = gr.Number(
label="Total Periods",
value=5,
minimum=1,
maximum=20,
step=1
)
additional_instructions = gr.Textbox(
label="Additional Requirements (optional)",
placeholder="Specific teaching methods, resources, or special considerations..."
)
generate_btn = gr.Button("Generate Lesson Plan", variant="primary")
# Common controls
with gr.Row():
submit_btn = gr.Button("Send", variant="primary")
mic_btn = gr.Button("Transcribe Voice", variant="secondary")
mic = gr.Audio(sources=["microphone"], type="numpy", label="Voice Input")
# Event handlers
def toggle_modes(chat, student, image, lesson):
return [
gr.update(visible=chat),
gr.update(visible=student),
gr.update(visible=image),
gr.update(visible=lesson)
]
def load_student_file(file_path):
success, message = ai_system.load_data(file_path)
return message
def process_document(file_path):
if not file_path:
return "⚠️ Please select a document first"
success, message = ai_system.extract_text_from_document(file_path)
return message
def render_history(history):
"""Render chat history with images and proper formatting"""
rendered = []
for user_msg, bot_msg, image_links in history:
user_html = f"<div class='user-msg'>{user_msg}</div>"
# Ensure bot_msg is a string before checking substrings
bot_text = str(bot_msg)
if "Lesson Plan:" in bot_text:
bot_html = f"<div class='lesson-plan'>{bot_text}</div>"
else:
bot_html = f"<div class='bot-msg'>{bot_text}</div>"
# Add images if available
if image_links:
images_html = "".join(
f"<img src='{url}' class='chat-image' onclick='showImage(\"{url}\")' />"
for url in image_links
)
bot_html += f"<br><br><b>πŸ“Έ Related Visuals:</b><br><div style='display: flex; flex-wrap: wrap;'>{images_html}</div>"
rendered.append((user_html, bot_html))
return rendered
def respond(message, history, chat, student, image, lesson,
tokens, student_q, image_q, image_upload, image_url,
include_visuals, num_imgs, topic, duration, additional):
"""
1. Use actual_message (depending on mode) instead of raw `message`.
2. Convert any non‐string Bot response (like VLMDecodedResults) to str().
3. Disable the input box during streaming, then re-enable it at the end.
"""
updated_history = list(history)
# Determine which prompt to actually send
if student:
actual_message = student_q
elif image:
actual_message = image_q
elif lesson:
actual_message = f"Generate lesson plan for: {topic} ({duration} periods)"
if additional:
actual_message += f"\nAdditional: {additional}"
else:
actual_message = message
# Add a β€œtyping” placeholder entry using actual_message
typing_html = "<div class='typing-indicator'><div class='typing-dot'></div><div class='typing-dot'></div><div class='typing-dot'></div></div>"
updated_history.append((actual_message, typing_html, []))
# First yield: clear & disable the input box while streaming
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
full_response = ""
images = []
try:
if chat:
# General chat mode β†’ streaming
for chunk in ai_system.generate_text_stream(actual_message, tokens):
full_response = chunk
updated_history[-1] = (actual_message, full_response, [])
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
if include_visuals:
images = ai_system.fetch_images(actual_message, num_imgs)
elif student:
# Student analytics mode β†’ streaming
if ai_system.current_df is None:
full_response = "⚠️ Please upload a student data file first"
else:
for chunk in ai_system.analyze_student_data(student_q, tokens):
full_response = chunk
updated_history[-1] = (actual_message, full_response, [])
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
elif image:
# Image analysis mode β†’ synchronous
if (not image_upload) and (not image_url):
full_response = "⚠️ Please upload an image or enter a URL"
else:
# ai_system.analyze_image(...) returns a VLMDecodedResults, not a string
result_obj = ai_system.analyze_image(image_upload, image_url, image_q)
full_response = str(result_obj)
elif lesson:
# Lesson planning mode β†’ streaming
if not topic:
full_response = "⚠️ Please enter a lesson topic"
else:
duration = int(duration) if duration else 5
for chunk in ai_system.generate_lesson_plan(topic, duration, additional, tokens):
full_response = chunk
updated_history[-1] = (actual_message, full_response, [])
yield render_history(updated_history), gr.update(value="", interactive=False), updated_history
# Final update: put in images (if any), trim history, and re-enable input
updated_history[-1] = (actual_message, full_response, images)
if len(updated_history) > MAX_HISTORY_TURNS:
updated_history = updated_history[-MAX_HISTORY_TURNS:]
except Exception as e:
error_msg = f"❌ Error: {str(e)}"
updated_history[-1] = (actual_message, error_msg, [])
# Final yield: clear & re-enable the input box
yield render_history(updated_history), gr.update(value="", interactive=True), updated_history
# Voice transcription
def transcribe_audio(audio):
return ai_system.transcribe(audio)
# Mode toggles
chat_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
student_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
image_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
lesson_mode.change(fn=toggle_modes, inputs=[chat_mode, student_mode, image_mode, lesson_mode],
outputs=[chat_inputs, student_inputs, image_inputs, lesson_inputs])
# File upload handler
file_upload.change(fn=load_student_file, inputs=file_upload, outputs=student_status)
# Document upload handler
doc_upload.change(fn=process_document, inputs=doc_upload, outputs=doc_status)
mic_btn.click(fn=transcribe_audio, inputs=mic, outputs=user_input)
# Submit handler
submit_btn.click(
fn=respond,
inputs=[
user_input, chat_state, chat_mode, student_mode, image_mode, lesson_mode,
max_tokens, student_question, image_question, image_upload, image_url,
include_images, num_images,
topic_input, duration_input, additional_instructions
],
outputs=[chatbot, user_input, chat_state]
)
# Lesson plan generation button
generate_btn.click(
fn=respond,
inputs=[
gr.Textbox(value="Generate lesson plan", visible=False), # Hidden message
chat_state,
chat_mode, student_mode, image_mode, lesson_mode,
max_tokens,
gr.Textbox(visible=False), # student_q
gr.Textbox(visible=False), # image_q
gr.Image(visible=False), # image_upload
gr.Textbox(visible=False), # image_url
gr.Checkbox(visible=False), # include_visuals
gr.Slider(visible=False), # num_imgs
topic_input, # Pass topic
duration_input, # Pass duration
additional_instructions # Pass additional instructions
],
outputs=[chatbot, user_input, chat_state]
)
if __name__ == "__main__":
demo.launch(share=True, debug=True, show_api=False)