Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			A10G
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			A10G
	Create app.py
#229
by
						
HoneyBree
	
							
						- opened
							
					
    	
        app.py
    CHANGED
    
    | @@ -1,312 +0,0 @@ | |
| 1 | 
            -
            import sys
         | 
| 2 | 
            -
            sys.path.append('src/blip')
         | 
| 3 | 
            -
            sys.path.append('src/clip')
         | 
| 4 | 
            -
             | 
| 5 | 
            -
            import clip
         | 
| 6 | 
            -
            import gradio as gr
         | 
| 7 | 
            -
            import hashlib
         | 
| 8 | 
            -
            import math
         | 
| 9 | 
            -
            import numpy as np
         | 
| 10 | 
            -
            import os
         | 
| 11 | 
            -
            import pickle
         | 
| 12 | 
            -
            import torch
         | 
| 13 | 
            -
            import torchvision.transforms as T
         | 
| 14 | 
            -
            import torchvision.transforms.functional as TF
         | 
| 15 | 
            -
             | 
| 16 | 
            -
            from models.blip import blip_decoder
         | 
| 17 | 
            -
            from PIL import Image
         | 
| 18 | 
            -
            from torch import nn
         | 
| 19 | 
            -
            from torch.nn import functional as F
         | 
| 20 | 
            -
            from tqdm import tqdm
         | 
| 21 | 
            -
             | 
| 22 | 
            -
            from share_btn import community_icon_html, loading_icon_html, share_js
         | 
| 23 | 
            -
             | 
| 24 | 
            -
            device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
         | 
| 25 | 
            -
             | 
| 26 | 
            -
            print("Loading BLIP model...")
         | 
| 27 | 
            -
            blip_image_eval_size = 384
         | 
| 28 | 
            -
            blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth'        
         | 
| 29 | 
            -
            blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='large', med_config='./src/blip/configs/med_config.json')
         | 
| 30 | 
            -
            blip_model.eval()
         | 
| 31 | 
            -
            blip_model = blip_model.to(device)
         | 
| 32 | 
            -
             | 
| 33 | 
            -
            print("Loading CLIP model...")
         | 
| 34 | 
            -
            clip_model_name = 'ViT-L/14' # https://huggingface.co/openai/clip-vit-large-patch14
         | 
| 35 | 
            -
            clip_model, clip_preprocess = clip.load(clip_model_name, device=device)
         | 
| 36 | 
            -
            clip_model.to(device).eval()
         | 
| 37 | 
            -
             | 
| 38 | 
            -
            chunk_size = 2048
         | 
| 39 | 
            -
            flavor_intermediate_count = 2048
         | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
            class LabelTable():
         | 
| 43 | 
            -
                def __init__(self, labels, desc):
         | 
| 44 | 
            -
                    self.labels = labels
         | 
| 45 | 
            -
                    self.embeds = []
         | 
| 46 | 
            -
             | 
| 47 | 
            -
                    hash = hashlib.sha256(",".join(labels).encode()).hexdigest()
         | 
| 48 | 
            -
             | 
| 49 | 
            -
                    os.makedirs('./cache', exist_ok=True)
         | 
| 50 | 
            -
                    cache_filepath = f"./cache/{desc}.pkl"
         | 
| 51 | 
            -
                    if desc is not None and os.path.exists(cache_filepath):
         | 
| 52 | 
            -
                        with open(cache_filepath, 'rb') as f:
         | 
| 53 | 
            -
                            data = pickle.load(f)
         | 
| 54 | 
            -
                            if data['hash'] == hash:
         | 
| 55 | 
            -
                                self.labels = data['labels']
         | 
| 56 | 
            -
                                self.embeds = data['embeds']
         | 
| 57 | 
            -
             | 
| 58 | 
            -
                    if len(self.labels) != len(self.embeds):
         | 
| 59 | 
            -
                        self.embeds = []
         | 
| 60 | 
            -
                        chunks = np.array_split(self.labels, max(1, len(self.labels)/chunk_size))
         | 
| 61 | 
            -
                        for chunk in tqdm(chunks, desc=f"Preprocessing {desc}" if desc else None):
         | 
| 62 | 
            -
                            text_tokens = clip.tokenize(chunk).to(device)
         | 
| 63 | 
            -
                            with torch.no_grad():
         | 
| 64 | 
            -
                                text_features = clip_model.encode_text(text_tokens).float()
         | 
| 65 | 
            -
                            text_features /= text_features.norm(dim=-1, keepdim=True)
         | 
| 66 | 
            -
                            text_features = text_features.half().cpu().numpy()
         | 
| 67 | 
            -
                            for i in range(text_features.shape[0]):
         | 
| 68 | 
            -
                                self.embeds.append(text_features[i])
         | 
| 69 | 
            -
             | 
| 70 | 
            -
                        with open(cache_filepath, 'wb') as f:
         | 
| 71 | 
            -
                            pickle.dump({"labels":self.labels, "embeds":self.embeds, "hash":hash}, f)
         | 
| 72 | 
            -
                
         | 
| 73 | 
            -
                def _rank(self, image_features, text_embeds, top_count=1):
         | 
| 74 | 
            -
                    top_count = min(top_count, len(text_embeds))
         | 
| 75 | 
            -
                    similarity = torch.zeros((1, len(text_embeds))).to(device)
         | 
| 76 | 
            -
                    text_embeds = torch.stack([torch.from_numpy(t) for t in text_embeds]).float().to(device)
         | 
| 77 | 
            -
                    for i in range(image_features.shape[0]):
         | 
| 78 | 
            -
                        similarity += (image_features[i].unsqueeze(0) @ text_embeds.T).softmax(dim=-1)
         | 
| 79 | 
            -
                    _, top_labels = similarity.cpu().topk(top_count, dim=-1)
         | 
| 80 | 
            -
                    return [top_labels[0][i].numpy() for i in range(top_count)]
         | 
| 81 | 
            -
             | 
| 82 | 
            -
                def rank(self, image_features, top_count=1):
         | 
| 83 | 
            -
                    if len(self.labels) <= chunk_size:
         | 
| 84 | 
            -
                        tops = self._rank(image_features, self.embeds, top_count=top_count)
         | 
| 85 | 
            -
                        return [self.labels[i] for i in tops]
         | 
| 86 | 
            -
             | 
| 87 | 
            -
                    num_chunks = int(math.ceil(len(self.labels)/chunk_size))
         | 
| 88 | 
            -
                    keep_per_chunk = int(chunk_size / num_chunks)
         | 
| 89 | 
            -
             | 
| 90 | 
            -
                    top_labels, top_embeds = [], []
         | 
| 91 | 
            -
                    for chunk_idx in tqdm(range(num_chunks)):
         | 
| 92 | 
            -
                        start = chunk_idx*chunk_size
         | 
| 93 | 
            -
                        stop = min(start+chunk_size, len(self.embeds))
         | 
| 94 | 
            -
                        tops = self._rank(image_features, self.embeds[start:stop], top_count=keep_per_chunk)
         | 
| 95 | 
            -
                        top_labels.extend([self.labels[start+i] for i in tops])
         | 
| 96 | 
            -
                        top_embeds.extend([self.embeds[start+i] for i in tops])
         | 
| 97 | 
            -
             | 
| 98 | 
            -
                    tops = self._rank(image_features, top_embeds, top_count=top_count)
         | 
| 99 | 
            -
                    return [top_labels[i] for i in tops]
         | 
| 100 | 
            -
             | 
| 101 | 
            -
            def generate_caption(pil_image):
         | 
| 102 | 
            -
                gpu_image = T.Compose([
         | 
| 103 | 
            -
                    T.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=TF.InterpolationMode.BICUBIC),
         | 
| 104 | 
            -
                    T.ToTensor(),
         | 
| 105 | 
            -
                    T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
         | 
| 106 | 
            -
                ])(pil_image).unsqueeze(0).to(device)
         | 
| 107 | 
            -
             | 
| 108 | 
            -
                with torch.no_grad():
         | 
| 109 | 
            -
                    caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
         | 
| 110 | 
            -
                return caption[0]
         | 
| 111 | 
            -
             | 
| 112 | 
            -
            def load_list(filename):
         | 
| 113 | 
            -
                with open(filename, 'r', encoding='utf-8', errors='replace') as f:
         | 
| 114 | 
            -
                    items = [line.strip() for line in f.readlines()]
         | 
| 115 | 
            -
                return items
         | 
| 116 | 
            -
             | 
| 117 | 
            -
            def rank_top(image_features, text_array):
         | 
| 118 | 
            -
                text_tokens = clip.tokenize([text for text in text_array]).to(device)
         | 
| 119 | 
            -
                with torch.no_grad():
         | 
| 120 | 
            -
                    text_features = clip_model.encode_text(text_tokens).float()
         | 
| 121 | 
            -
                text_features /= text_features.norm(dim=-1, keepdim=True)
         | 
| 122 | 
            -
             | 
| 123 | 
            -
                similarity = torch.zeros((1, len(text_array)), device=device)
         | 
| 124 | 
            -
                for i in range(image_features.shape[0]):
         | 
| 125 | 
            -
                    similarity += (image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
         | 
| 126 | 
            -
             | 
| 127 | 
            -
                _, top_labels = similarity.cpu().topk(1, dim=-1)
         | 
| 128 | 
            -
                return text_array[top_labels[0][0].numpy()]
         | 
| 129 | 
            -
             | 
| 130 | 
            -
            def similarity(image_features, text):
         | 
| 131 | 
            -
                text_tokens = clip.tokenize([text]).to(device)
         | 
| 132 | 
            -
                with torch.no_grad():
         | 
| 133 | 
            -
                    text_features = clip_model.encode_text(text_tokens).float()       
         | 
| 134 | 
            -
                text_features /= text_features.norm(dim=-1, keepdim=True)
         | 
| 135 | 
            -
                similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T
         | 
| 136 | 
            -
                return similarity[0][0]
         | 
| 137 | 
            -
             | 
| 138 | 
            -
            def interrogate(image):
         | 
| 139 | 
            -
                caption = generate_caption(image)
         | 
| 140 | 
            -
             | 
| 141 | 
            -
                images = clip_preprocess(image).unsqueeze(0).to(device)
         | 
| 142 | 
            -
                with torch.no_grad():
         | 
| 143 | 
            -
                    image_features = clip_model.encode_image(images).float()
         | 
| 144 | 
            -
                image_features /= image_features.norm(dim=-1, keepdim=True)
         | 
| 145 | 
            -
             | 
| 146 | 
            -
                flaves = flavors.rank(image_features, flavor_intermediate_count)
         | 
| 147 | 
            -
                best_medium = mediums.rank(image_features, 1)[0]
         | 
| 148 | 
            -
                best_artist = artists.rank(image_features, 1)[0]
         | 
| 149 | 
            -
                best_trending = trendings.rank(image_features, 1)[0]
         | 
| 150 | 
            -
                best_movement = movements.rank(image_features, 1)[0]
         | 
| 151 | 
            -
             | 
| 152 | 
            -
                best_prompt = caption
         | 
| 153 | 
            -
                best_sim = similarity(image_features, best_prompt)
         | 
| 154 | 
            -
             | 
| 155 | 
            -
                def check(addition):
         | 
| 156 | 
            -
                    nonlocal best_prompt, best_sim
         | 
| 157 | 
            -
                    prompt = best_prompt + ", " + addition
         | 
| 158 | 
            -
                    sim = similarity(image_features, prompt)
         | 
| 159 | 
            -
                    if sim > best_sim:
         | 
| 160 | 
            -
                        best_sim = sim
         | 
| 161 | 
            -
                        best_prompt = prompt
         | 
| 162 | 
            -
                        return True
         | 
| 163 | 
            -
                    return False
         | 
| 164 | 
            -
             | 
| 165 | 
            -
                def check_multi_batch(opts):
         | 
| 166 | 
            -
                    nonlocal best_prompt, best_sim
         | 
| 167 | 
            -
                    prompts = []
         | 
| 168 | 
            -
                    for i in range(2**len(opts)):
         | 
| 169 | 
            -
                        prompt = best_prompt
         | 
| 170 | 
            -
                        for bit in range(len(opts)):
         | 
| 171 | 
            -
                            if i & (1 << bit):
         | 
| 172 | 
            -
                                prompt += ", " + opts[bit]
         | 
| 173 | 
            -
                        prompts.append(prompt)
         | 
| 174 | 
            -
             | 
| 175 | 
            -
                    prompt = rank_top(image_features, prompts)
         | 
| 176 | 
            -
                    sim = similarity(image_features, prompt)
         | 
| 177 | 
            -
                    if sim > best_sim:
         | 
| 178 | 
            -
                        best_sim = sim
         | 
| 179 | 
            -
                        best_prompt = prompt
         | 
| 180 | 
            -
             | 
| 181 | 
            -
                check_multi_batch([best_medium, best_artist, best_trending, best_movement])
         | 
| 182 | 
            -
             | 
| 183 | 
            -
                extended_flavors = set(flaves)
         | 
| 184 | 
            -
                for _ in tqdm(range(25), desc="Flavor chain"):
         | 
| 185 | 
            -
                    try:
         | 
| 186 | 
            -
                        best = rank_top(image_features, [f"{best_prompt}, {f}" for f in extended_flavors])
         | 
| 187 | 
            -
                        flave = best[len(best_prompt)+2:]
         | 
| 188 | 
            -
                        if not check(flave):
         | 
| 189 | 
            -
                            break
         | 
| 190 | 
            -
                        extended_flavors.remove(flave)
         | 
| 191 | 
            -
                    except:
         | 
| 192 | 
            -
                        # exceeded max prompt length
         | 
| 193 | 
            -
                        break
         | 
| 194 | 
            -
             | 
| 195 | 
            -
                return best_prompt
         | 
| 196 | 
            -
             | 
| 197 | 
            -
             | 
| 198 | 
            -
            sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central']
         | 
| 199 | 
            -
            trending_list = [site for site in sites]
         | 
| 200 | 
            -
            trending_list.extend(["trending on "+site for site in sites])
         | 
| 201 | 
            -
            trending_list.extend(["featured on "+site for site in sites])
         | 
| 202 | 
            -
            trending_list.extend([site+" contest winner" for site in sites])
         | 
| 203 | 
            -
             | 
| 204 | 
            -
            raw_artists = load_list('data/artists.txt')
         | 
| 205 | 
            -
            artists = [f"by {a}" for a in raw_artists]
         | 
| 206 | 
            -
            artists.extend([f"inspired by {a}" for a in raw_artists])
         | 
| 207 | 
            -
             | 
| 208 | 
            -
            artists = LabelTable(artists, "artists")
         | 
| 209 | 
            -
            flavors = LabelTable(load_list('data/flavors.txt'), "flavors")
         | 
| 210 | 
            -
            mediums = LabelTable(load_list('data/mediums.txt'), "mediums")
         | 
| 211 | 
            -
            movements = LabelTable(load_list('data/movements.txt'), "movements")
         | 
| 212 | 
            -
            trendings = LabelTable(trending_list, "trendings")
         | 
| 213 | 
            -
             | 
| 214 | 
            -
             | 
| 215 | 
            -
            def inference(image):
         | 
| 216 | 
            -
                return interrogate(image), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
         | 
| 217 | 
            -
             | 
| 218 | 
            -
            title = """
         | 
| 219 | 
            -
                <div style="text-align: center; max-width: 650px; margin: 0 auto;">
         | 
| 220 | 
            -
                    <div
         | 
| 221 | 
            -
                    style="
         | 
| 222 | 
            -
                        display: inline-flex;
         | 
| 223 | 
            -
                        align-items: center;
         | 
| 224 | 
            -
                        gap: 0.8rem;
         | 
| 225 | 
            -
                        font-size: 1.75rem;
         | 
| 226 | 
            -
                    "
         | 
| 227 | 
            -
                    >
         | 
| 228 | 
            -
                    <h1 style="font-weight: 900; margin-bottom: 7px;">
         | 
| 229 | 
            -
                        CLIP Interrogator
         | 
| 230 | 
            -
                    </h1>
         | 
| 231 | 
            -
                    </div>
         | 
| 232 | 
            -
                    <p style="margin-bottom: 10px; font-size: 94%">
         | 
| 233 | 
            -
                    Want to figure out what a good prompt might be to create new images like an existing one? The CLIP Interrogator is here to get you answers!
         | 
| 234 | 
            -
                    </p>
         | 
| 235 | 
            -
                </div>
         | 
| 236 | 
            -
            """
         | 
| 237 | 
            -
            article = """
         | 
| 238 | 
            -
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
         | 
| 239 | 
            -
                <p>
         | 
| 240 | 
            -
                Example art by <a href="https://pixabay.com/illustrations/watercolour-painting-art-effect-4799014/">Layers</a> 
         | 
| 241 | 
            -
                and <a href="https://pixabay.com/illustrations/animal-painting-cat-feline-pet-7154059/">Lin Tong</a> 
         | 
| 242 | 
            -
                from pixabay.com
         | 
| 243 | 
            -
                </p>
         | 
| 244 | 
            -
             | 
| 245 | 
            -
                <p>
         | 
| 246 | 
            -
                Server busy? You can also run on <a href="https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/main/clip_interrogator.ipynb">Google Colab</a>
         | 
| 247 | 
            -
                </p>
         | 
| 248 | 
            -
             | 
| 249 | 
            -
                <p>
         | 
| 250 | 
            -
                Has this been helpful to you? Follow me on twitter 
         | 
| 251 | 
            -
                <a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a> 
         | 
| 252 | 
            -
                and check out more tools at my
         | 
| 253 | 
            -
                <a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a>
         | 
| 254 | 
            -
                </p>
         | 
| 255 | 
            -
            </div>
         | 
| 256 | 
            -
            """
         | 
| 257 | 
            -
             | 
| 258 | 
            -
            css = '''
         | 
| 259 | 
            -
            #col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
         | 
| 260 | 
            -
            a {text-decoration-line: underline; font-weight: 600;}
         | 
| 261 | 
            -
            .animate-spin {
         | 
| 262 | 
            -
                animation: spin 1s linear infinite;
         | 
| 263 | 
            -
            }
         | 
| 264 | 
            -
            @keyframes spin {
         | 
| 265 | 
            -
                from {
         | 
| 266 | 
            -
                    transform: rotate(0deg);
         | 
| 267 | 
            -
                }
         | 
| 268 | 
            -
                to {
         | 
| 269 | 
            -
                    transform: rotate(360deg);
         | 
| 270 | 
            -
                }
         | 
| 271 | 
            -
            }
         | 
| 272 | 
            -
            #share-btn-container {
         | 
| 273 | 
            -
                display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
         | 
| 274 | 
            -
            }
         | 
| 275 | 
            -
            #share-btn {
         | 
| 276 | 
            -
                all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
         | 
| 277 | 
            -
            }
         | 
| 278 | 
            -
            #share-btn * {
         | 
| 279 | 
            -
                all: unset;
         | 
| 280 | 
            -
            }
         | 
| 281 | 
            -
            #share-btn-container div:nth-child(-n+2){
         | 
| 282 | 
            -
                width: auto !important;
         | 
| 283 | 
            -
                min-height: 0px !important;
         | 
| 284 | 
            -
            }
         | 
| 285 | 
            -
            #share-btn-container .wrap {
         | 
| 286 | 
            -
                display: none !important;
         | 
| 287 | 
            -
            }
         | 
| 288 | 
            -
            '''
         | 
| 289 | 
            -
             | 
| 290 | 
            -
            with gr.Blocks(css=css) as block:
         | 
| 291 | 
            -
                with gr.Column(elem_id="col-container"):
         | 
| 292 | 
            -
                    gr.HTML(title)
         | 
| 293 | 
            -
             | 
| 294 | 
            -
                    input_image = gr.Image(type='pil', elem_id="input-img")
         | 
| 295 | 
            -
                    submit_btn = gr.Button("Submit")
         | 
| 296 | 
            -
                    output_text = gr.Textbox(label="Output", elem_id="output-txt")
         | 
| 297 | 
            -
             | 
| 298 | 
            -
                    with gr.Group(elem_id="share-btn-container"):
         | 
| 299 | 
            -
                        community_icon = gr.HTML(community_icon_html, visible=False)
         | 
| 300 | 
            -
                        loading_icon = gr.HTML(loading_icon_html, visible=False)
         | 
| 301 | 
            -
                        share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
         | 
| 302 | 
            -
             | 
| 303 | 
            -
                    examples=[['example01.jpg'], ['example02.jpg']]
         | 
| 304 | 
            -
                    ex = gr.Examples(examples=examples, fn=inference, inputs=input_image, outputs=[output_text, share_button, community_icon, loading_icon], cache_examples=True, run_on_click=True)
         | 
| 305 | 
            -
                    ex.dataset.headers = [""]
         | 
| 306 | 
            -
                    
         | 
| 307 | 
            -
                    gr.HTML(article)
         | 
| 308 | 
            -
             | 
| 309 | 
            -
                submit_btn.click(fn=inference, inputs=input_image, outputs=[output_text, share_button, community_icon, loading_icon])
         | 
| 310 | 
            -
                share_button.click(None, [], [], _js=share_js)
         | 
| 311 | 
            -
             | 
| 312 | 
            -
            block.queue(max_size=32).launch(show_api=False)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
