|
import gradio as gr
|
|
from transformers import AutoImageProcessor
|
|
from transformers import SiglipForImageClassification
|
|
from transformers.image_utils import load_image
|
|
from PIL import Image
|
|
import torch
|
|
|
|
|
|
model_name = "prithivMLmods/Gym-Workout-Classifier-SigLIP2"
|
|
model = SiglipForImageClassification.from_pretrained(model_name)
|
|
processor = AutoImageProcessor.from_pretrained(model_name)
|
|
|
|
def workout_classification(image):
|
|
"""Predicts workout exercise classification for an image."""
|
|
image = Image.fromarray(image).convert("RGB")
|
|
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
|
|
|
labels = {
|
|
"0": "barbell biceps curl", "1": "bench press", "2": "chest fly machine", "3": "deadlift",
|
|
"4": "decline bench press", "5": "hammer curl", "6": "hip thrust", "7": "incline bench press",
|
|
"8": "lat pulldown", "9": "lateral raises", "10": "leg extension", "11": "leg raises",
|
|
"12": "plank", "13": "pull up", "14": "push up", "15": "romanian deadlift",
|
|
"16": "russian twist", "17": "shoulder press", "18": "squat", "19": "t bar row",
|
|
"20": "tricep dips", "21": "tricep pushdown"
|
|
}
|
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
|
|
|
return predictions
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=workout_classification,
|
|
inputs=gr.Image(type="numpy"),
|
|
outputs=gr.Label(label="Prediction Scores"),
|
|
title="Gym Workout Classification",
|
|
description="Upload an image to classify the workout exercise."
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
iface.launch() |