pvaluedotone's picture
Update app.py
eba7586 verified
import pandas as pd
import re
import torch
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from transformers import pipeline
cached_df = None
cached_file_name = None
# Load sentiment pipeline
sentiment_pipeline = pipeline(
"text-classification",
model="pvaluedotone/bigbird-flight-2",
tokenizer="pvaluedotone/bigbird-flight-2",
device=0 if torch.cuda.is_available() else -1
)
# Contractions dictionary
contractions_dict = {
"don't": "do not", "can't": "cannot", "i'm": "i am", "it's": "it is",
"he's": "he is", "she's": "she is", "they're": "they are", "we're": "we are",
"you're": "you are", "that's": "that is", "there's": "there is", "what's": "what is",
"won't": "will not", "isn't": "is not", "aren't": "are not", "wasn't": "was not",
"weren't": "were not", "didn't": "did not", "doesn't": "does not", "haven't": "have not",
"hasn't": "has not", "hadn't": "had not", "wouldn't": "would not", "shouldn't": "should not",
"couldn't": "could not", "mustn't": "must not", "let's": "let us"
}
contractions_pattern = re.compile(r"\b(" + "|".join(re.escape(k) for k in contractions_dict.keys()) + r")\b")
def expand_contractions(text: str) -> str:
def replace(match):
return contractions_dict[match.group(0)]
return contractions_pattern.sub(replace, text)
# Emoticon mapping
emoticon_dict = {
":)": "smile", ":-)": "smile", ":(": "sad", ":-(": "sad",
";)": "wink", ";-)": "wink", ":d": "laugh", ":-d": "laugh",
":p": "playful", ":-p": "playful", ":'(": "cry", ":/": "skeptical",
":'-)": "tears_of_joy"
}
def clean_text(text: str) -> str:
if not isinstance(text, str):
return ""
text = re.sub(r"http\S+|@\w+", "", text)
text = expand_contractions(text)
try:
import emoji
text = emoji.demojize(text)
except ImportError:
pass
for emoticon, desc in emoticon_dict.items():
text = text.replace(emoticon, f" {desc} ")
text = re.sub(r"#(\w+)", r"\1", text)
text = re.sub(r"\s+", " ", text).strip()
return text
def predict_sentiment(texts):
results = sentiment_pipeline(texts, truncation=False, batch_size=32)
sentiments = []
confidences = []
for r in results:
label_num = int(r['label'].split('_')[-1])
sentiments.append(label_num)
confidences.append(r['score'])
return sentiments, confidences
def recategorize(labels, mode, pos_threshold, neg_threshold):
if mode == "Original (1–10)":
return labels
elif mode == "Binary (Positive vs Negative)":
return ["Positive" if lbl >= pos_threshold else "Negative" for lbl in labels]
elif mode == "Ternary (Pos/Neu/Neg)":
return [
"Positive" if lbl >= pos_threshold else
"Negative" if lbl <= neg_threshold else
"Neutral" for lbl in labels
]
def analyze_sentiment(file, text_column, mode, pos_thresh, neg_thresh, auto_fix, apply_cleaning):
global cached_df, cached_file_name
try:
df = pd.read_csv(file.name)
except Exception as e:
return f"Error reading CSV file: {e}", None, None, None, None, None
if text_column not in df.columns:
return "Selected column not found.", None, None, None, None, None
if (
cached_df is not None and
cached_file_name == file.name and
"sentiment_1to10" in cached_df.columns and
"confidence" in cached_df.columns
):
df = cached_df.copy()
else:
if apply_cleaning:
df["processed_text"] = df[text_column].apply(clean_text)
else:
df["processed_text"] = df[text_column].astype(str)
predictions, confidences = predict_sentiment(df["processed_text"].tolist())
df["sentiment_1to10"] = predictions
df["confidence"] = confidences
cached_df = df.copy()
cached_file_name = file.name
if mode == "Ternary (Pos/Neu/Neg)":
if pos_thresh <= neg_thresh:
if auto_fix:
neg_thresh = pos_thresh - 1
if neg_thresh < 1:
return "⚠️ Unable to auto-correct: thresholds out of valid range (1–10).", None, None, None, None, None
else:
return (
f"⚠️ Invalid thresholds: Positive min ({pos_thresh}) must be greater than Negative max ({neg_thresh}).",
None, None, None, None, None
)
df["sentiment_recategorised"] = recategorize(df["sentiment_1to10"], mode, pos_thresh, neg_thresh)
output_file = "bigbird_sentiment_results.csv"
df.to_csv(output_file, index=False)
if "plot1_path" not in globals():
plt.figure(figsize=(6, 4))
sns.countplot(x=df["sentiment_1to10"], palette="Blues")
plt.title("Original 10-Class Sentiment Distribution")
plt.tight_layout()
global plot1_path
plot1_path = "original_dist.png"
plt.savefig(plot1_path)
plt.close()
plt.figure(figsize=(6, 4))
sns.countplot(x=df["sentiment_recategorised"], palette="Set2")
plt.title(f"Recategorised Sentiment Distribution ({mode})")
plt.tight_layout()
plot2_path = "recategorised_dist.png"
plt.savefig(plot2_path)
plt.close()
if "plot3_path" not in globals():
plt.figure(figsize=(6, 4))
sns.histplot(df["confidence"], bins=20, color="skyblue", kde=True)
plt.title("Confidence Score Distribution")
plt.xlabel("Confidence")
plt.tight_layout()
global plot3_path
plot3_path = "confidence_dist.png"
plt.savefig(plot3_path)
plt.close()
preview = df[[text_column, "processed_text", "sentiment_1to10", "confidence", "sentiment_recategorised"]].head(10)
return f"βœ… Sentiment analysis complete. Used cache: {cached_file_name == file.name}", preview, output_file, plot1_path, plot2_path, plot3_path
def get_text_columns(file):
try:
df = pd.read_csv(file.name, nrows=1)
text_columns = df.select_dtypes(include='object').columns.tolist()
if not text_columns:
return gr.update(choices=[], value=None, label="⚠️ No text columns found!")
return gr.update(choices=text_columns, value=text_columns[0])
except Exception:
return gr.update(choices=[], value=None, label="⚠️ Error reading file")
with gr.Blocks() as app:
gr.Markdown("## ✈️ Sentiment analysis with Big Bird Flight 2")
gr.Markdown("**Citation:** Mat Roni, S. (2025). *Sentiment analysis with Big Bird Flight 2 on Gradio* (version 1.0) [software]. https://huggingface.co/spaces/pvaluedotone/bigbird-flight-2 DOI: https://doi.org/10.57967/hf/5780")
with gr.Row():
file_input = gr.File(label="Upload CSV", file_types=[".csv"])
column_dropdown = gr.Dropdown(label="Select Text Column", choices=[], interactive=True)
file_input.change(get_text_columns, inputs=file_input, outputs=column_dropdown)
output_mode = gr.Radio(
label="Sentiment Output Type",
choices=["Original (1–10)", "Binary (Positive vs Negative)", "Ternary (Pos/Neu/Neg)"],
value="Original (1–10)",
interactive=True
)
pos_thresh_slider = gr.Slider(3, 10, value=7, step=1, label="Positive min", visible=False)
neg_thresh_slider = gr.Slider(1, 7, value=4, step=1, label="Negative max", visible=False)
auto_fix_checkbox = gr.Checkbox(label="Auto-correct thresholds if overlapping?", value=True)
cleaning_checkbox = gr.Checkbox(label="Apply Text Cleaning", value=True) # βœ… New toggle
def toggle_thresholds(mode):
show_pos = mode != "Original (1–10)"
show_neg = mode == "Ternary (Pos/Neu/Neg)"
return (
gr.update(visible=show_pos),
gr.update(visible=show_neg)
)
output_mode.change(toggle_thresholds, inputs=output_mode, outputs=[pos_thresh_slider, neg_thresh_slider])
run_button = gr.Button("Process sentiment")
status = gr.Textbox(label="Status")
df_output = gr.Dataframe(label="Sample Output (Top 10)")
file_result = gr.File(label="Download Full Results")
plot_orig = gr.Image(label="Original Sentiment Distribution")
plot_recat = gr.Image(label="Recategorised Sentiment Distribution")
plot_conf = gr.Image(label="Confidence Score Distribution")
run_button.click(
analyze_sentiment,
inputs=[
file_input, column_dropdown, output_mode,
pos_thresh_slider, neg_thresh_slider, auto_fix_checkbox,
cleaning_checkbox # βœ… New input
],
outputs=[status, df_output, file_result, plot_orig, plot_recat, plot_conf]
)
app.launch(share=True, debug=True)