File size: 2,472 Bytes
4a620fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from PIL import Image
import cv2
import torch

# Load model and processor
mix_model_id = "google/paligemma-3b-mix-224"
mix_model = PaliGemmaForConditionalGeneration.from_pretrained(mix_model_id)
mix_processor = AutoProcessor.from_pretrained(mix_model_id)

# Define function to extract frames from the video
def extract_frames(video_path, frame_interval=1):
    # Open the video file
    vidcap = cv2.VideoCapture(video_path)
    frames = []
    success, image = vidcap.read()
    count = 0

    while success:
        # Capture a frame at the specified interval
        if count % frame_interval == 0:
            frames.append(image)
        success, image = vidcap.read()
        count += 1

    vidcap.release()
    return frames

# Define function to generate captions for a video
def process_video(video, prompt):
    # Use video directly as the path (video is passed as a string)
    frames = extract_frames(video, frame_interval=10)  # Extract frames at intervals

    captions = []

    for frame in frames:
        # Convert frame to PIL Image and process it (assuming mix_processor handles PIL Image)
        image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        inputs = mix_processor(image.convert("RGB"), prompt, return_tensors="pt")

        try:
            # Generate output from the model for each frame
            output = mix_model.generate(**inputs, max_new_tokens=20)

            # Decode and store the output for the frame
            decoded_output = mix_processor.decode(output[0], skip_special_tokens=True)
            captions.append(decoded_output[len(prompt):])  # Remove prompt part from the output
        except IndexError as e:
            print(f"IndexError: {e}")
            captions.append("Error processing frame")

    # Combine all frame captions into a coherent video description
    return " ".join(captions)

# Define Gradio interface for video captioning
inputs = [
    gr.Video(label="Upload Video"),
    gr.Textbox(label="Prompt", placeholder="Enter your question")
]
outputs = gr.Textbox(label="Generated Caption")

# Create the Gradio app for video captioning
demo = gr.Interface(fn=process_video, inputs=inputs, outputs=outputs, title="Video Captioning with Mix PaliGemma Model",
                    description="Upload a video and get captions based on your prompt.")

# Launch the app
demo.launch(debug=True)