reab5555's picture
Update app.py
69325b3 verified
import torch
from PIL import Image
import requests
from openai import OpenAI
from transformers import (Owlv2Processor, Owlv2ForObjectDetection,
AutoProcessor, AutoModelForMaskGeneration)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import base64
import io
import numpy as np
import gradio as gr
import json
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
def encode_image_to_base64(image):
print(f"Encode image type: {type(image)}") # Debug print
try:
# If image is a tuple (as sometimes provided by Gradio), take the first element
if isinstance(image, tuple):
print(f"Image is tuple with length: {len(image)}") # Debug print
if len(image) > 0 and image[0] is not None:
if isinstance(image[0], np.ndarray):
image = Image.fromarray(image[0])
else:
image = image[0]
else:
raise ValueError("Invalid image tuple provided")
# If image is a numpy array, convert to PIL Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# If image is a path string, open it
elif isinstance(image, str):
image = Image.open(image)
print(f"Image type after conversion: {type(image)}") # Debug print
# Ensure image is in PIL Image format
if not isinstance(image, Image.Image):
raise ValueError(f"Input must be a PIL Image, numpy array, or valid image path. Got {type(image)}")
# Convert image to RGB if it's in RGBA mode
if image.mode == 'RGBA':
image = image.convert('RGB')
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
except Exception as e:
print(f"Encode error details: {str(e)}") # Debug print
raise
def analyze_image(image):
client = OpenAI(api_key=OPENAI_API_KEY)
base64_image = encode_image_to_base64(image)
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": """Your task is to determine if the image is surprising or not surprising.
if the image is surprising, determine which element, figure or object in the image is making the image surprising and write it only in one sentence with no more then 6 words, otherwise, write 'NA'.
Also rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising.
Additionally, write one sentence about what would be expected in this scene, and one sentence about what is unexpected.
Provide the response as a JSON with the following structure:
{
"label": "[surprising OR not surprising]",
"element": "[element]",
"rating": [1-5],
"expected": "[one sentence about what would be expected]",
"unexpected": "[one sentence about what is unexpected]"
}"""
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
]
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
max_tokens=100,
temperature=0.1,
response_format={
"type": "json_object"
}
)
return response.choices[0].message.content
def show_mask(mask, ax, random_color=False):
try:
# Debug print to understand mask type
print(f"show_mask input type: {type(mask)}")
# Convert mask if it's a tuple
if isinstance(mask, tuple):
if len(mask) > 0 and mask[0] is not None:
mask = mask[0]
else:
raise ValueError("Invalid mask tuple")
# Convert torch tensor to numpy if needed
if torch.is_tensor(mask):
mask = mask.cpu().numpy()
# Handle 4D tensor/array case
if len(mask.shape) == 4:
mask = mask[0, 0]
# Handle 3D tensor/array case
elif len(mask.shape) == 3:
mask = mask[0]
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([1.0, 0.0, 0.0, 0.5])
mask_image = np.zeros((*mask.shape, 4), dtype=np.float32)
mask_image[mask > 0] = color
ax.imshow(mask_image)
except Exception as e:
print(f"show_mask error: {str(e)}")
print(f"mask shape: {getattr(mask, 'shape', 'no shape')}")
raise
def process_image_detection(image, target_label, surprise_rating):
try:
# Handle different image input types
if isinstance(image, tuple):
if len(image) > 0 and image[0] is not None:
if isinstance(image[0], np.ndarray):
image = Image.fromarray(image[0])
else:
image = image[0]
else:
raise ValueError("Invalid image tuple provided")
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif isinstance(image, str):
image = Image.open(image)
# Ensure image is in PIL Image format
if not isinstance(image, Image.Image):
raise ValueError(f"Input must be a PIL Image, got {type(image)}")
# Ensure image is in RGB mode
if image.mode != 'RGB':
image = image.convert('RGB')
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Get original image DPI and size
original_dpi = image.info.get('dpi', (72, 72))
original_size = image.size
print(f"Image size: {original_size}")
# Calculate relative font size
base_fontsize = min(original_size) / 80
print("Loading models...")
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-large-patch14")
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14").to(device)
sam_processor = AutoProcessor.from_pretrained("facebook/sam-vit-large")
sam_model = AutoModelForMaskGeneration.from_pretrained("facebook/sam-vit-large").to(device)
print("Running object detection...")
inputs = owlv2_processor(text=[target_label], images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = owlv2_model(**inputs)
target_sizes = torch.tensor([image.size[::-1]]).to(device)
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
# Use original image dimensions for figure size
dpi = 300
width, height = image.size
figsize = (width / dpi, height / dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
fig.add_axes(ax)
ax.imshow(image)
scores = results["scores"]
if len(scores) > 0:
max_score_idx = scores.argmax().item()
max_score = scores[max_score_idx].item()
if max_score > 0.2:
print("Processing detection results...")
box = results["boxes"][max_score_idx].cpu().numpy()
print("Running SAM model...")
# Convert image to numpy array if needed for SAM
if isinstance(image, Image.Image):
image_np = np.array(image)
else:
image_np = image
sam_inputs = sam_processor(
image_np,
input_boxes=[[[box[0], box[1], box[2], box[3]]]],
return_tensors="pt"
).to(device)
with torch.no_grad():
sam_outputs = sam_model(**sam_inputs)
masks = sam_processor.image_processor.post_process_masks(
sam_outputs.pred_masks.cpu(),
sam_inputs["original_sizes"].cpu(),
sam_inputs["reshaped_input_sizes"].cpu()
)
print(f"Mask type: {type(masks)}, Mask shape: {len(masks)}")
mask = masks[0]
if isinstance(mask, torch.Tensor):
mask = mask.numpy()
show_mask(mask, ax=ax)
rect = patches.Rectangle(
(box[0], box[1]),
box[2] - box[0],
box[3] - box[1],
linewidth=max(2, min(original_size) / 500),
edgecolor='red',
facecolor='none'
)
ax.add_patch(rect)
# Only add the probability score
#plt.text(
# box[0], box[1] - base_fontsize,
# f'{max_score:.2f}',
# color='red',
# fontsize=base_fontsize,
# fontweight='bold'
#)
plt.axis('off')
print("Saving final image...")
try:
buf = io.BytesIO()
fig.savefig(buf,
format='png',
dpi=dpi,
bbox_inches='tight',
pad_inches=0)
buf.seek(0)
# Open as PIL Image
output_image = Image.open(buf)
# Convert to RGB if needed
if output_image.mode != 'RGB':
output_image = output_image.convert('RGB')
# Save to final buffer
final_buf = io.BytesIO()
output_image.save(final_buf, format='PNG', dpi=original_dpi)
final_buf.seek(0)
plt.close(fig)
buf.close()
return final_buf
except Exception as e:
print(f"Save error details: {str(e)}")
raise
except Exception as e:
print(f"Process image detection error: {str(e)}")
print(f"Error occurred at line {e.__traceback__.tb_lineno}")
raise
def process_and_analyze(image):
if image is None:
return None, "Please upload an image first."
print(f"Initial image type: {type(image)}") # Debug print
if OPENAI_API_KEY is None:
return None, "OpenAI API key not found in environment variables."
try:
# Convert the image to PIL format if needed
if isinstance(image, tuple):
print(f"Image is tuple, length: {len(image)}") # Debug print
if len(image) > 0 and image[0] is not None:
if isinstance(image[0], np.ndarray):
image = Image.fromarray(image[0])
else:
print(f"First element type: {type(image[0])}") # Debug print
image = image[0]
else:
return None, "Invalid image format provided"
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif isinstance(image, str):
image = Image.open(image)
print(f"Image type after conversion: {type(image)}") # Debug print
if not isinstance(image, Image.Image):
return None, f"Invalid image format: {type(image)}"
# Ensure image is in RGB mode
if image.mode != 'RGB':
image = image.convert('RGB')
# Analyze image
print("Starting GPT analysis...") # Debug print
gpt_response = analyze_image(image)
print(f"GPT response: {gpt_response}") # Debug print
try:
response_data = json.loads(gpt_response)
except json.JSONDecodeError:
return None, "Error: Invalid response format from GPT"
if not all(key in response_data for key in ["label", "element", "rating"]):
return None, "Error: Missing required fields in analysis response"
print(f"Response data: {response_data}") # Debug print
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
try:
print("Starting image detection...") # Debug print
result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
result_image = Image.open(result_buf)
analysis_text = (
f"Label: {response_data['label']}\n"
f"Element: {response_data['element']}\n"
f"Rating: {response_data['rating']}/5\n"
f"Expected: {response_data['expected']}\n"
f"Unexpected: {response_data['unexpected']}"
)
return result_image, analysis_text
except Exception as detection_error:
print(f"Detection error details: {str(detection_error)}") # Debug print
return None, f"Error in image detection processing: {str(detection_error)}"
else:
return image, "Not Surprising"
except Exception as e:
error_type = type(e).__name__
error_msg = str(e)
detailed_error = f"Error ({error_type}): {error_msg}"
print(detailed_error) # Debug print
return None, f"Error processing image: {error_msg}"
# Create Gradio interface
def create_interface():
with gr.Blocks() as demo:
with gr.Row(): # Horizontal layout for the left side alignment
with gr.Column(scale=1): # Adjust the scale for the left section
gr.Image(
value="appendix/icon.webp",
width=65,
interactive=False,
show_label=False,
show_download_button=False,
elem_id="icon"
)
with gr.Column(scale=3):
gr.Markdown("## Image Anomaly-Surprise Detection")
gr.Markdown(
"This project offers a tool that identifies surprising elements in images, "
"pinpointing what violates our expectations. It analyzes images for unexpected objects, "
"locations, social scenarios, settings, and roles."
)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload Image")
analyze_btn = gr.Button("Analyze Image")
with gr.Column():
output_image = gr.Image(label="Processed Image")
output_text = gr.Textbox(label="Analysis Results")
analyze_btn.click(
fn=process_and_analyze,
inputs=[input_image],
outputs=[output_image, output_text]
)
# Display example images in a row using Gradio Image components
with gr.Row():
gr.Image(value="appendix/gradio_example.png", width=250, show_label=False, interactive=False, show_download_button=False)
gr.Image(value="appendix/gradio_example2.png", width=250, show_label=False, interactive=False, show_download_button=False)
gr.Image(value="appendix/gradio_example3.png", width=250, show_label=False, interactive=False, show_download_button=False)
gr.Image(value="appendix/gradio_example4.png", width=250, show_label=False, interactive=False, show_download_button=False)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()