Spaces:
Sleeping
Sleeping
import torch | |
from PIL import Image | |
import requests | |
from openai import OpenAI | |
from transformers import (Owlv2Processor, Owlv2ForObjectDetection, | |
AutoProcessor, AutoModelForMaskGeneration) | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
import base64 | |
import io | |
import numpy as np | |
import gradio as gr | |
import json | |
import os | |
from dotenv import load_dotenv | |
# Load environment variables | |
load_dotenv() | |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') | |
def encode_image_to_base64(image): | |
print(f"Encode image type: {type(image)}") # Debug print | |
try: | |
# If image is a tuple (as sometimes provided by Gradio), take the first element | |
if isinstance(image, tuple): | |
print(f"Image is tuple with length: {len(image)}") # Debug print | |
if len(image) > 0 and image[0] is not None: | |
if isinstance(image[0], np.ndarray): | |
image = Image.fromarray(image[0]) | |
else: | |
image = image[0] | |
else: | |
raise ValueError("Invalid image tuple provided") | |
# If image is a numpy array, convert to PIL Image | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
# If image is a path string, open it | |
elif isinstance(image, str): | |
image = Image.open(image) | |
print(f"Image type after conversion: {type(image)}") # Debug print | |
# Ensure image is in PIL Image format | |
if not isinstance(image, Image.Image): | |
raise ValueError(f"Input must be a PIL Image, numpy array, or valid image path. Got {type(image)}") | |
# Convert image to RGB if it's in RGBA mode | |
if image.mode == 'RGBA': | |
image = image.convert('RGB') | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode('utf-8') | |
except Exception as e: | |
print(f"Encode error details: {str(e)}") # Debug print | |
raise | |
def analyze_image(image): | |
client = OpenAI(api_key=OPENAI_API_KEY) | |
base64_image = encode_image_to_base64(image) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": """Your task is to determine if the image is surprising or not surprising. | |
if the image is surprising, determine which element, figure or object in the image is making the image surprising and write it only in one sentence with no more then 6 words, otherwise, write 'NA'. | |
Also rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising. | |
Additionally, write one sentence about what would be expected in this scene, and one sentence about what is unexpected. | |
Provide the response as a JSON with the following structure: | |
{ | |
"label": "[surprising OR not surprising]", | |
"element": "[element]", | |
"rating": [1-5], | |
"expected": "[one sentence about what would be expected]", | |
"unexpected": "[one sentence about what is unexpected]" | |
}""" | |
}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{base64_image}" | |
} | |
} | |
] | |
} | |
] | |
response = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=messages, | |
max_tokens=100, | |
temperature=0.1, | |
response_format={ | |
"type": "json_object" | |
} | |
) | |
return response.choices[0].message.content | |
def show_mask(mask, ax, random_color=False): | |
try: | |
# Debug print to understand mask type | |
print(f"show_mask input type: {type(mask)}") | |
# Convert mask if it's a tuple | |
if isinstance(mask, tuple): | |
if len(mask) > 0 and mask[0] is not None: | |
mask = mask[0] | |
else: | |
raise ValueError("Invalid mask tuple") | |
# Convert torch tensor to numpy if needed | |
if torch.is_tensor(mask): | |
mask = mask.cpu().numpy() | |
# Handle 4D tensor/array case | |
if len(mask.shape) == 4: | |
mask = mask[0, 0] | |
# Handle 3D tensor/array case | |
elif len(mask.shape) == 3: | |
mask = mask[0] | |
if random_color: | |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
else: | |
color = np.array([1.0, 0.0, 0.0, 0.5]) | |
mask_image = np.zeros((*mask.shape, 4), dtype=np.float32) | |
mask_image[mask > 0] = color | |
ax.imshow(mask_image) | |
except Exception as e: | |
print(f"show_mask error: {str(e)}") | |
print(f"mask shape: {getattr(mask, 'shape', 'no shape')}") | |
raise | |
def process_image_detection(image, target_label, surprise_rating): | |
try: | |
# Handle different image input types | |
if isinstance(image, tuple): | |
if len(image) > 0 and image[0] is not None: | |
if isinstance(image[0], np.ndarray): | |
image = Image.fromarray(image[0]) | |
else: | |
image = image[0] | |
else: | |
raise ValueError("Invalid image tuple provided") | |
elif isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
elif isinstance(image, str): | |
image = Image.open(image) | |
# Ensure image is in PIL Image format | |
if not isinstance(image, Image.Image): | |
raise ValueError(f"Input must be a PIL Image, got {type(image)}") | |
# Ensure image is in RGB mode | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# Get original image DPI and size | |
original_dpi = image.info.get('dpi', (72, 72)) | |
original_size = image.size | |
print(f"Image size: {original_size}") | |
# Calculate relative font size | |
base_fontsize = min(original_size) / 80 | |
print("Loading models...") | |
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-large-patch14") | |
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14").to(device) | |
sam_processor = AutoProcessor.from_pretrained("facebook/sam-vit-large") | |
sam_model = AutoModelForMaskGeneration.from_pretrained("facebook/sam-vit-large").to(device) | |
print("Running object detection...") | |
inputs = owlv2_processor(text=[target_label], images=image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = owlv2_model(**inputs) | |
target_sizes = torch.tensor([image.size[::-1]]).to(device) | |
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0] | |
# Use original image dimensions for figure size | |
dpi = 300 | |
width, height = image.size | |
figsize = (width / dpi, height / dpi) | |
fig = plt.figure(figsize=figsize, dpi=dpi) | |
ax = plt.Axes(fig, [0., 0., 1., 1.]) | |
fig.add_axes(ax) | |
ax.imshow(image) | |
scores = results["scores"] | |
if len(scores) > 0: | |
max_score_idx = scores.argmax().item() | |
max_score = scores[max_score_idx].item() | |
if max_score > 0.2: | |
print("Processing detection results...") | |
box = results["boxes"][max_score_idx].cpu().numpy() | |
print("Running SAM model...") | |
# Convert image to numpy array if needed for SAM | |
if isinstance(image, Image.Image): | |
image_np = np.array(image) | |
else: | |
image_np = image | |
sam_inputs = sam_processor( | |
image_np, | |
input_boxes=[[[box[0], box[1], box[2], box[3]]]], | |
return_tensors="pt" | |
).to(device) | |
with torch.no_grad(): | |
sam_outputs = sam_model(**sam_inputs) | |
masks = sam_processor.image_processor.post_process_masks( | |
sam_outputs.pred_masks.cpu(), | |
sam_inputs["original_sizes"].cpu(), | |
sam_inputs["reshaped_input_sizes"].cpu() | |
) | |
print(f"Mask type: {type(masks)}, Mask shape: {len(masks)}") | |
mask = masks[0] | |
if isinstance(mask, torch.Tensor): | |
mask = mask.numpy() | |
show_mask(mask, ax=ax) | |
rect = patches.Rectangle( | |
(box[0], box[1]), | |
box[2] - box[0], | |
box[3] - box[1], | |
linewidth=max(2, min(original_size) / 500), | |
edgecolor='red', | |
facecolor='none' | |
) | |
ax.add_patch(rect) | |
# Only add the probability score | |
#plt.text( | |
# box[0], box[1] - base_fontsize, | |
# f'{max_score:.2f}', | |
# color='red', | |
# fontsize=base_fontsize, | |
# fontweight='bold' | |
#) | |
plt.axis('off') | |
print("Saving final image...") | |
try: | |
buf = io.BytesIO() | |
fig.savefig(buf, | |
format='png', | |
dpi=dpi, | |
bbox_inches='tight', | |
pad_inches=0) | |
buf.seek(0) | |
# Open as PIL Image | |
output_image = Image.open(buf) | |
# Convert to RGB if needed | |
if output_image.mode != 'RGB': | |
output_image = output_image.convert('RGB') | |
# Save to final buffer | |
final_buf = io.BytesIO() | |
output_image.save(final_buf, format='PNG', dpi=original_dpi) | |
final_buf.seek(0) | |
plt.close(fig) | |
buf.close() | |
return final_buf | |
except Exception as e: | |
print(f"Save error details: {str(e)}") | |
raise | |
except Exception as e: | |
print(f"Process image detection error: {str(e)}") | |
print(f"Error occurred at line {e.__traceback__.tb_lineno}") | |
raise | |
def process_and_analyze(image): | |
if image is None: | |
return None, "Please upload an image first." | |
print(f"Initial image type: {type(image)}") # Debug print | |
if OPENAI_API_KEY is None: | |
return None, "OpenAI API key not found in environment variables." | |
try: | |
# Convert the image to PIL format if needed | |
if isinstance(image, tuple): | |
print(f"Image is tuple, length: {len(image)}") # Debug print | |
if len(image) > 0 and image[0] is not None: | |
if isinstance(image[0], np.ndarray): | |
image = Image.fromarray(image[0]) | |
else: | |
print(f"First element type: {type(image[0])}") # Debug print | |
image = image[0] | |
else: | |
return None, "Invalid image format provided" | |
elif isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
elif isinstance(image, str): | |
image = Image.open(image) | |
print(f"Image type after conversion: {type(image)}") # Debug print | |
if not isinstance(image, Image.Image): | |
return None, f"Invalid image format: {type(image)}" | |
# Ensure image is in RGB mode | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
# Analyze image | |
print("Starting GPT analysis...") # Debug print | |
gpt_response = analyze_image(image) | |
print(f"GPT response: {gpt_response}") # Debug print | |
try: | |
response_data = json.loads(gpt_response) | |
except json.JSONDecodeError: | |
return None, "Error: Invalid response format from GPT" | |
if not all(key in response_data for key in ["label", "element", "rating"]): | |
return None, "Error: Missing required fields in analysis response" | |
print(f"Response data: {response_data}") # Debug print | |
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na": | |
try: | |
print("Starting image detection...") # Debug print | |
result_buf = process_image_detection(image, response_data["element"], response_data["rating"]) | |
result_image = Image.open(result_buf) | |
analysis_text = ( | |
f"Label: {response_data['label']}\n" | |
f"Element: {response_data['element']}\n" | |
f"Rating: {response_data['rating']}/5\n" | |
f"Expected: {response_data['expected']}\n" | |
f"Unexpected: {response_data['unexpected']}" | |
) | |
return result_image, analysis_text | |
except Exception as detection_error: | |
print(f"Detection error details: {str(detection_error)}") # Debug print | |
return None, f"Error in image detection processing: {str(detection_error)}" | |
else: | |
return image, "Not Surprising" | |
except Exception as e: | |
error_type = type(e).__name__ | |
error_msg = str(e) | |
detailed_error = f"Error ({error_type}): {error_msg}" | |
print(detailed_error) # Debug print | |
return None, f"Error processing image: {error_msg}" | |
# Create Gradio interface | |
def create_interface(): | |
with gr.Blocks() as demo: | |
with gr.Row(): # Horizontal layout for the left side alignment | |
with gr.Column(scale=1): # Adjust the scale for the left section | |
gr.Image( | |
value="appendix/icon.webp", | |
width=65, | |
interactive=False, | |
show_label=False, | |
show_download_button=False, | |
elem_id="icon" | |
) | |
with gr.Column(scale=3): | |
gr.Markdown("## Image Anomaly-Surprise Detection") | |
gr.Markdown( | |
"This project offers a tool that identifies surprising elements in images, " | |
"pinpointing what violates our expectations. It analyzes images for unexpected objects, " | |
"locations, social scenarios, settings, and roles." | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Upload Image") | |
analyze_btn = gr.Button("Analyze Image") | |
with gr.Column(): | |
output_image = gr.Image(label="Processed Image") | |
output_text = gr.Textbox(label="Analysis Results") | |
analyze_btn.click( | |
fn=process_and_analyze, | |
inputs=[input_image], | |
outputs=[output_image, output_text] | |
) | |
# Display example images in a row using Gradio Image components | |
with gr.Row(): | |
gr.Image(value="appendix/gradio_example.png", width=250, show_label=False, interactive=False, show_download_button=False) | |
gr.Image(value="appendix/gradio_example2.png", width=250, show_label=False, interactive=False, show_download_button=False) | |
gr.Image(value="appendix/gradio_example3.png", width=250, show_label=False, interactive=False, show_download_button=False) | |
gr.Image(value="appendix/gradio_example4.png", width=250, show_label=False, interactive=False, show_download_button=False) | |
return demo | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch() |