Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,84 +1,96 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModel
|
3 |
-
|
4 |
-
|
5 |
-
from langchain.chains.question_answering import load_qa_chain
|
6 |
-
from langchain.llms import HuggingFaceHub
|
7 |
import torch
|
|
|
8 |
|
9 |
-
#
|
10 |
def load_document(file):
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
def
|
17 |
-
# Load tokenizer and model
|
18 |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
19 |
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
28 |
-
with torch.no_grad():
|
29 |
-
model_output = model(**inputs)
|
30 |
-
embedding = model_output.last_hidden_state.mean(dim=1) # Mean pool the embeddings
|
31 |
-
embeddings.append(embedding.squeeze().numpy())
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
36 |
|
37 |
-
#
|
38 |
-
def
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
return
|
45 |
|
46 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
def chatbot_interface():
|
48 |
-
|
|
|
49 |
|
50 |
-
# Function to handle
|
51 |
def upload_file(file):
|
52 |
-
nonlocal
|
53 |
-
|
54 |
-
|
55 |
-
return "Document uploaded and processed. You can now ask questions."
|
56 |
|
57 |
# Function to handle user queries
|
58 |
def ask_question(query):
|
59 |
-
if
|
60 |
-
return
|
61 |
return "Please upload a document first."
|
62 |
|
63 |
-
# Gradio
|
64 |
upload = gr.File(label="Upload a PDF document")
|
65 |
question = gr.Textbox(label="Ask a question about the document")
|
66 |
answer = gr.Textbox(label="Answer", readonly=True)
|
67 |
|
68 |
-
# Linking the functions to Gradio interface
|
69 |
-
upload_button = gr.Interface(fn=upload_file, inputs=upload, outputs="text")
|
70 |
-
chat_box = gr.Interface(fn=ask_question, inputs=question, outputs=answer)
|
71 |
-
|
72 |
# Gradio app layout
|
73 |
with gr.Blocks() as demo:
|
74 |
gr.Markdown("# Document Chatbot")
|
75 |
with gr.Row():
|
76 |
-
|
77 |
with gr.Row():
|
78 |
question.render()
|
79 |
answer.render()
|
80 |
|
81 |
-
#
|
|
|
|
|
|
|
82 |
demo.launch()
|
83 |
|
84 |
# Start the chatbot interface
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
|
|
|
|
5 |
import torch
|
6 |
+
from PyPDF2 import PdfReader
|
7 |
|
8 |
+
# Load PDF and extract text from it
|
9 |
def load_document(file):
|
10 |
+
pdf = PdfReader(file)
|
11 |
+
text = ''
|
12 |
+
for page_num in range(len(pdf.pages)):
|
13 |
+
page = pdf.pages[page_num]
|
14 |
+
text += page.extract_text()
|
15 |
+
return text
|
16 |
|
17 |
+
# Embed the document using Hugging Face model
|
18 |
+
def embed_text(text):
|
19 |
+
# Load tokenizer and model from Hugging Face
|
20 |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
21 |
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
22 |
+
|
23 |
+
# Tokenize and embed text
|
24 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
25 |
+
with torch.no_grad():
|
26 |
+
outputs = model(**inputs)
|
27 |
+
embeddings = outputs.last_hidden_state.mean(dim=1) # Mean pooling to get the embedding
|
28 |
+
return embeddings.squeeze().numpy()
|
29 |
|
30 |
+
# Initialize FAISS index
|
31 |
+
def initialize_faiss(embedding_size):
|
32 |
+
index = faiss.IndexFlatL2(embedding_size)
|
33 |
+
return index
|
34 |
|
35 |
+
# Add document embeddings to FAISS index
|
36 |
+
def add_to_index(index, embeddings):
|
37 |
+
index.add(embeddings)
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Search the FAISS index for the best matching text
|
40 |
+
def search_index(index, query_embedding, texts, top_k=3):
|
41 |
+
distances, indices = index.search(np.array([query_embedding]), top_k)
|
42 |
+
return [texts[i] for i in indices[0]]
|
43 |
|
44 |
+
# Process the document and build the FAISS index
|
45 |
+
def process_document(file):
|
46 |
+
text = load_document(file)
|
47 |
+
chunks = [text[i:i + 512] for i in range(0, len(text), 512)] # Split text into chunks
|
48 |
+
embeddings = np.vstack([embed_text(chunk) for chunk in chunks]) # Create embeddings for each chunk
|
49 |
+
faiss_index = initialize_faiss(embeddings.shape[1]) # Initialize FAISS index
|
50 |
+
add_to_index(faiss_index, embeddings) # Add embeddings to FAISS index
|
51 |
+
return faiss_index, chunks
|
52 |
|
53 |
+
# Answer query by searching FAISS index
|
54 |
+
def query_document(query, faiss_index, document_chunks):
|
55 |
+
query_embedding = embed_text(query) # Embed query
|
56 |
+
results = search_index(faiss_index, query_embedding, document_chunks) # Search for the best matching chunks
|
57 |
+
return "\n\n".join(results) # Return the matching document parts
|
58 |
+
|
59 |
+
# Gradio interface
|
60 |
def chatbot_interface():
|
61 |
+
faiss_index = None
|
62 |
+
document_chunks = None
|
63 |
|
64 |
+
# Function to handle document upload
|
65 |
def upload_file(file):
|
66 |
+
nonlocal faiss_index, document_chunks
|
67 |
+
faiss_index, document_chunks = process_document(file)
|
68 |
+
return "Document uploaded and indexed. You can now ask questions."
|
|
|
69 |
|
70 |
# Function to handle user queries
|
71 |
def ask_question(query):
|
72 |
+
if faiss_index and document_chunks:
|
73 |
+
return query_document(query, faiss_index, document_chunks)
|
74 |
return "Please upload a document first."
|
75 |
|
76 |
+
# Gradio UI
|
77 |
upload = gr.File(label="Upload a PDF document")
|
78 |
question = gr.Textbox(label="Ask a question about the document")
|
79 |
answer = gr.Textbox(label="Answer", readonly=True)
|
80 |
|
|
|
|
|
|
|
|
|
81 |
# Gradio app layout
|
82 |
with gr.Blocks() as demo:
|
83 |
gr.Markdown("# Document Chatbot")
|
84 |
with gr.Row():
|
85 |
+
upload.render()
|
86 |
with gr.Row():
|
87 |
question.render()
|
88 |
answer.render()
|
89 |
|
90 |
+
# Bind upload and question functionality
|
91 |
+
upload.upload(upload_file)
|
92 |
+
question.submit(ask_question, inputs=question, outputs=answer)
|
93 |
+
|
94 |
demo.launch()
|
95 |
|
96 |
# Start the chatbot interface
|