rizkims commited on
Commit
4fc17c5
·
1 Parent(s): a60f537

Initial commit for hoax detector

Browse files
Files changed (2) hide show
  1. app.py +0 -72
  2. requirements.txt +2 -1
app.py DELETED
@@ -1,72 +0,0 @@
1
- import gradio as gr
2
- import pickle
3
- from transformers import pipeline
4
- import re
5
- import unicodedata
6
-
7
- # Load pipelines
8
- qa_pipeline = pipeline("question-answering", model="Rifky/Indobert-QA", tokenizer="Rifky/Indobert-QA")
9
- ner_pipeline = pipeline("ner", model="cahya/bert-base-indonesian-NER", tokenizer="cahya/bert-base-indonesian-NER", grouped_entities=True)
10
-
11
- # Load model hoax
12
- with open("ensemble_model.pkl", "rb") as f:
13
- model = pickle.load(f)
14
-
15
- with open("vectorizer.pkl", "rb") as f:
16
- vectorizer = pickle.load(f)
17
-
18
- def clean_text(text):
19
- text = re.sub(r'[\n\r]+', ' ', text)
20
- text = re.sub(r'\s{2,}', ' ', text)
21
- text = text.strip()
22
- text = unicodedata.normalize('NFKC', text)
23
- text = text.lower()
24
- text = re.sub(r'https?://\S+|www\.\S+', ' url ', text)
25
- asian_char_pattern = re.compile(
26
- r'[\u4e00-\u9FFF\u30A0-\u30FF\u3040-\u309F\uAC00-\uD7AF\u1100-\u11FF\u3130-\u318F]'
27
- )
28
- text = asian_char_pattern.sub(' ', text)
29
- unwanted_scripts_pattern = re.compile(
30
- r'[\u2D30-\u2D7F\uA980-\uA9DF\u1E00-\u1EFF\u0250-\u02AF\u1D00-\u1D7F]'
31
- )
32
- text = ' '.join(word for word in text.split() if not unwanted_scripts_pattern.search(word))
33
- text = re.sub(r'[^a-z0-9\s.,!?;:\'\"()-]', ' ', text)
34
- return re.sub(r'\s{2,}', ' ', text).strip()
35
-
36
- # === Fungsi Utama ===
37
- def detect_hoax(text):
38
- cleaned = clean_text(text)
39
- tfidf = vectorizer.transform([cleaned])
40
- prediction = model.predict(tfidf)[0]
41
- return "Hoaks" if prediction == 1 else "Bukan Hoaks"
42
-
43
- def run_qa(context, question):
44
- if not context or not question:
45
- return "Masukkan context dan pertanyaan."
46
- result = qa_pipeline(question=question, context=context)
47
- return result["answer"]
48
-
49
- def run_ner(text):
50
- if not text:
51
- return []
52
- result = ner_pipeline(text)
53
- return [(ent["word"], ent["entity_group"]) for ent in result]
54
-
55
- # === Gradio UI ===
56
- hoax_tab = gr.Interface(fn=detect_hoax, inputs="text", outputs="text", title="Deteksi Hoaks")
57
-
58
- qa_tab = gr.Interface(
59
- fn=run_qa,
60
- inputs=[gr.Textbox(label="Context"), gr.Textbox(label="Pertanyaan")],
61
- outputs="text",
62
- title="Question Answering"
63
- )
64
-
65
- ner_tab = gr.Interface(
66
- fn=run_ner,
67
- inputs="text",
68
- outputs=gr.HighlightedText(label="Hasil NER", combine_adjacent=True),
69
- title="Named Entity Recognition"
70
- )
71
-
72
- gr.TabbedInterface([hoax_tab, qa_tab, ner_tab], ["Deteksi Hoaks", "QA", "NER"]).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -2,4 +2,5 @@ gradio
2
  scikit-learn
3
  transformers
4
  torch
5
- regex
 
 
2
  scikit-learn
3
  transformers
4
  torch
5
+ regex
6
+ joblib