Spaces:
Sleeping
Sleeping
File size: 4,799 Bytes
5bf8054 c310cb4 ee5c425 c310cb4 a25ae1b c310cb4 a25ae1b df2d876 a25ae1b c310cb4 f75874f 047ab5b bf10d7f 047ab5b f75874f bf10d7f 4e61db1 bf10d7f f75874f 047ab5b 4e61db1 047ab5b 4e61db1 047ab5b bf10d7f f75874f 047ab5b c310cb4 a25ae1b c310cb4 a25ae1b 98eaa14 a25ae1b 98eaa14 84ca7cb 6e89986 98eaa14 ed2e1d6 df2d876 6e89986 c310cb4 5bf8054 a25ae1b c0052fc a25ae1b f75874f df2d876 f75874f ee5c425 f75874f ee5c425 f75874f ee5c425 c310cb4 a25ae1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import gradio as gr
LAST_UPDATED = "Nov 25th 2024"
####################################
# Datos estáticos del leaderboard
####################################
leaderboard_data = [
{'name': 'StyleTTS 2', 'STOI': 0.998, 'PESQ': 3.921, 'WER': 0.162, 'UTMOS': 3.47},
{'name': 'Matxa-TTS', 'STOI': 0.996, 'PESQ': 3.539, 'WER': 0.179, 'UTMOS': 3.50},
{'name': 'Matxa-TTS-multiaccent', 'STOI': 0.996, 'PESQ': 3.415, 'WER': 0.242, 'UTMOS': 2.98},
{'name': 'StableTTS', 'STOI': 0.997, 'PESQ': 3.643, 'WER': 0.164, 'UTMOS': 2.62},
]
# Texto para la pestaña de métricas
METRICS_TAB_TEXT = """
## Metrics
Models in the leaderboard are evaluated using several key metrics:
* **UTMOS** (UTokyo-SaruLab Mean Opinion Score),
* **WER** (Word Error Rate),
* **STOI** (Short-Time Objective Intelligibility),
* **PESQ** (Perceptual Evaluation of Speech Quality).
These metrics help evaluate both the accuracy and quality of the model.
### UTMOS (UTokyo-SaruLab Mean Opinion Score)[[Paper](https://arxiv.org/abs/2204.02152)]
UTMOS is a MOS prediction system. **A higher UTMOS indicates better quality** of the generated voice.
### WER (Word Error Rate)
WER is a common metric for evaluating speech recognition systems. It measures the percentage of words in the generated transcript that differ from the reference (correct) transcript. **A lower WER value indicates higher accuracy**.
Example:
| Reference | the | cat | sat | on | the | mat |
|-------------|------|-----|---------|-----|------|-----|
| Prediction | the | cat | **sit** | on | the | |
| Label | ✅ | ✅ | S | ✅ | ✅ | D |
The WER calculation is done as follows:
```
WER = (S + I + D) / N = (1 + 0 + 1) / 6 = 0.333
```
### STOI (Short-Time Objective Intelligibility)[[Paper](https://ieeexplore.ieee.org/abstract/document/5495701?casa_token=PLtqLc8KNAgAAAAA:FOLuZ4dgMYsnGb1dQHgqVOouQzRJ3vA5yqj-sbwf8gs9Q-AIDCLkMZzAgzRrAogwwxULK9zsYeE)]
STOI measures the intelligibility of the synthesized speech signal compared to the original signal. **A higher STOI indicates better intelligibility**.
### PESQ (Perceptual Evaluation of Speech Quality)[[Paper](https://ieeexplore.ieee.org/abstract/document/941023?casa_token=jdtHy84_KhQAAAAA:qHN3WbT6cNdufj6OOn_fn0Je0RedMv-WJCmhQ_3CWy4nMTuDvFMF3KstAmKqLx5suQwdPgGByoY)]
PESQ is a perceptual metric that evaluates the quality of speech in a similar manner to how a human listener would. **A higher PESQ indicates better voice quality**.
## Benchmark Datasets
Model performance is evaluated using [our test datasets](https://huggingface.co/spaces/rjzevallos/test_app/blob/main/bsc.txt). These datasets cover a variety of domains and acoustic conditions, ensuring a robust evaluation.
"""
####################################
# Functions (static version)
####################################
def get_leaderboard():
"""
Retorna el leaderboard en orden descendente por PESQ y luego por UTMOS.
"""
# Ordenar primero por PESQ (calidad del habla) y luego por UTMOS (calidad percibida)
sorted_leaderboard = sorted(leaderboard_data, key=lambda x: (x['UTMOS']), reverse=True)
# Asignar el rank basado en el orden por PESQ
for rank, model in enumerate(sorted_leaderboard):
model['rank'] = rank + 1 # rank es la posición en la lista (1-indexed)
return [[model['rank'], model['name'], model['UTMOS'], model['WER'], model['STOI'], model['PESQ']] for model in sorted_leaderboard]
####################################
# Interfaz con Gradio
####################################
theme = gr.themes.Base(
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
with gr.Blocks(theme=theme) as demo:
gr.Markdown("# 🏆 Leaderboard\nVote to help the community determine the best Catalan TTS models.\n")
with gr.Blocks(theme=theme) as demo:
gr.Markdown("# 🏆 Leaderboard\nVote to help the community determine the best Catalan TTS models.\n")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 Leaderboard", elem_id="od-benchmark-tab-table", id=0):
leaderboard_table = gr.DataFrame(
headers=["Rank", "Model", "UTMOS", "WER", "STOI", "PESQ"],
datatype=["str", "str", "str", "str", "str", "str"],
value=get_leaderboard() # Carga los datos iniciales de la tabla
)
with gr.TabItem("📈 Metrics", elem_id="od-benchmark-tab-table", id=1):
gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
# Lanzar la aplicación
demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False)
|