Spaces:
Running
Running
File size: 1,945 Bytes
306e5e3 4c8f98f 306e5e3 4c8f98f 306e5e3 4c8f98f 306e5e3 4c8f98f 306e5e3 4c8f98f 306e5e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Embedding-0.6B")
model = AutoModel.from_pretrained("Qwen/Qwen3-Embedding-0.6B")
def get_embedding(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = model(**inputs)
return outputs.last_hidden_state[:, 0, :] # [CLS] token
def compare_sentences(reference, comparisons):
if len(reference) > 250:
return "❌ Error: Reference exceeds 250 character limit."
comparison_list = [s.strip() for s in comparisons.strip().split('\n') if s.strip()]
if not comparison_list:
return "❌ Error: No comparison sentences provided."
if any(len(s) > 250 for s in comparison_list):
return "❌ Error: One or more comparison sentences exceed 250 characters."
ref_emb = get_embedding(reference)
comp_embs = torch.cat([get_embedding(s) for s in comparison_list], dim=0)
similarities = F.cosine_similarity(ref_emb, comp_embs).tolist()
results = "\n".join([f"Similarity with: \"{s}\"\n→ {round(score, 4)}" for s, score in zip(comparison_list, similarities)])
return results
demo = gr.Interface(
fn=compare_sentences,
inputs=[
gr.Textbox(label="Reference Sentence (max 250 characters)", lines=2, placeholder="Type the reference sentence here..."),
gr.Textbox(label="Comparison Sentences (one per line, each max 250 characters)", lines=8, placeholder="Type comparison sentences here, one per line..."),
],
outputs="text",
title="Qwen3 Embedding Comparison Demo",
description="Enter a reference sentence and multiple comparison sentences (one per line). The model computes the cosine similarity between the reference and each comparison."
)
if __name__ == "__main__":
demo.launch()
|