File size: 1,945 Bytes
306e5e3
 
 
4c8f98f
306e5e3
 
 
 
 
 
 
 
 
4c8f98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306e5e3
4c8f98f
306e5e3
 
4c8f98f
 
 
 
 
306e5e3
4c8f98f
 
306e5e3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Embedding-0.6B")
model = AutoModel.from_pretrained("Qwen/Qwen3-Embedding-0.6B")

def get_embedding(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True)
    with torch.no_grad():
        outputs = model(**inputs)
        return outputs.last_hidden_state[:, 0, :]  # [CLS] token

def compare_sentences(reference, comparisons):
    if len(reference) > 250:
        return "❌ Error: Reference exceeds 250 character limit."
    
    comparison_list = [s.strip() for s in comparisons.strip().split('\n') if s.strip()]
    if not comparison_list:
        return "❌ Error: No comparison sentences provided."

    if any(len(s) > 250 for s in comparison_list):
        return "❌ Error: One or more comparison sentences exceed 250 characters."

    ref_emb = get_embedding(reference)
    comp_embs = torch.cat([get_embedding(s) for s in comparison_list], dim=0)

    similarities = F.cosine_similarity(ref_emb, comp_embs).tolist()
    results = "\n".join([f"Similarity with: \"{s}\"\n→ {round(score, 4)}" for s, score in zip(comparison_list, similarities)])

    return results

demo = gr.Interface(
    fn=compare_sentences,
    inputs=[
        gr.Textbox(label="Reference Sentence (max 250 characters)", lines=2, placeholder="Type the reference sentence here..."),
        gr.Textbox(label="Comparison Sentences (one per line, each max 250 characters)", lines=8, placeholder="Type comparison sentences here, one per line..."),
    ],
    outputs="text",
    title="Qwen3 Embedding Comparison Demo",
    description="Enter a reference sentence and multiple comparison sentences (one per line). The model computes the cosine similarity between the reference and each comparison."
)

if __name__ == "__main__":
    demo.launch()