|
import torch.nn as nn |
|
from huggingface_hub import PyTorchModelHubMixin |
|
|
|
class ModelColorization(nn.Module, PyTorchModelHubMixin): |
|
def __init__(self): |
|
super(ModelColorization, self).__init__() |
|
self.encoder = nn.Sequential( |
|
nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1), |
|
nn.MaxPool2d(kernel_size=2, stride=2), |
|
nn.ReLU(), |
|
nn.BatchNorm2d(64), |
|
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1), |
|
nn.MaxPool2d(kernel_size=2, stride=2), |
|
nn.ReLU(), |
|
nn.BatchNorm2d(32), |
|
nn.Conv2d(32, 16, kernel_size=3, stride=1, padding=1), |
|
nn.MaxPool2d(kernel_size=2, stride=2), |
|
nn.ReLU(), |
|
nn.BatchNorm2d(16), |
|
nn.Flatten(), |
|
nn.Linear(16*45*45, 4000), |
|
) |
|
self.decoder = nn.Sequential( |
|
nn.Linear(4000, 16 * 45 * 45), |
|
nn.ReLU(), |
|
nn.Unflatten(1, (16, 45, 45)), |
|
nn.ConvTranspose2d(16, 32, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
nn.ReLU(), |
|
nn.BatchNorm2d(32), |
|
nn.ConvTranspose2d(32, 64, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
nn.ReLU(), |
|
nn.BatchNorm2d(64), |
|
nn.ConvTranspose2d(64, 3, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
x = self.encoder(x) |
|
x = self.decoder(x) |
|
return x |