seronk's picture
Update tasks/audio.py
767af86 verified
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
#import torch
#from torch.utils.data import DataLoader
#from /app/tasks/Model_Loader.py import M5, load_model
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Quantized M5"
ROUTE = "/audio"
@router.post(ROUTE, tags=["Audio Task"],
description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
"""
Evaluate audio classification for rainforest sound detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-1)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"chainsaw": 0,
"environment": 1
}
# Load and prepare the dataset
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
#model_path = "quantized_teacher_m5_static.pth"
#model, device = load_model(model_path)
# def preprocess_audio(example, target_length=32000):
# """
# Convert dataset into tensors:
# - Convert to tensor
# - Normalize waveform
# - Pad/truncate to `target_length`
# """
# waveform = torch.tensor(example["audio"]["array"], dtype=torch.float32).unsqueeze(0) # Add batch dim
# # Normalize waveform
# waveform = (waveform - waveform.mean()) / (waveform.std() + 1e-6)
# # Pad or truncate to fixed length
# if waveform.shape[1] < target_length:
# pad = torch.zeros(1, target_length - waveform.shape[1])
# waveform = torch.cat((waveform, pad), dim=1) # Pad
# else:
# waveform = waveform[:, :target_length] # Truncate
# label = torch.tensor(example["label"], dtype=torch.long) # Ensure int64
# return {"waveform": waveform, "label": label}
# train_test = train_test.map(preprocess_audio, batched=True)
# test_dataset = train_test.map(preprocess_audio)
# train_loader = DataLoader(train_test, batch_size=32, shuffle=True)
true_labels = train_dataset["label"]
predictions = []
predictions = [random.randint(0, 1) for _ in range(len(true_labels))]
# with torch.no_grad():
# for waveforms, labels in train_loader:
# waveforms, labels = waveforms.to(device), labels.to(device)
# outputs = model(waveforms)
# predicted_label = torch.argmax(F.softmax(outputs, dim=1), dim=1)
# true_labels.extend(labels.cpu().numpy())
# predicted_labels.extend(predicted_label.cpu().numpy())
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results