Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import random | |
import os | |
#import torch | |
#from torch.utils.data import DataLoader | |
#from /app/tasks/Model_Loader.py import M5, load_model | |
from .utils.evaluation import AudioEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
from dotenv import load_dotenv | |
load_dotenv() | |
router = APIRouter() | |
DESCRIPTION = "Quantized M5" | |
ROUTE = "/audio" | |
async def evaluate_audio(request: AudioEvaluationRequest): | |
""" | |
Evaluate audio classification for rainforest sound detection. | |
Current Model: Random Baseline | |
- Makes random predictions from the label space (0-1) | |
- Used as a baseline for comparison | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"chainsaw": 0, | |
"environment": 1 | |
} | |
# Load and prepare the dataset | |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate | |
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) | |
# Split dataset | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
test_dataset = train_test["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE CODE HERE | |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. | |
#-------------------------------------------------------------------------------------------- | |
# Make random predictions (placeholder for actual model inference) | |
#model_path = "quantized_teacher_m5_static.pth" | |
#model, device = load_model(model_path) | |
# def preprocess_audio(example, target_length=32000): | |
# """ | |
# Convert dataset into tensors: | |
# - Convert to tensor | |
# - Normalize waveform | |
# - Pad/truncate to `target_length` | |
# """ | |
# waveform = torch.tensor(example["audio"]["array"], dtype=torch.float32).unsqueeze(0) # Add batch dim | |
# # Normalize waveform | |
# waveform = (waveform - waveform.mean()) / (waveform.std() + 1e-6) | |
# # Pad or truncate to fixed length | |
# if waveform.shape[1] < target_length: | |
# pad = torch.zeros(1, target_length - waveform.shape[1]) | |
# waveform = torch.cat((waveform, pad), dim=1) # Pad | |
# else: | |
# waveform = waveform[:, :target_length] # Truncate | |
# label = torch.tensor(example["label"], dtype=torch.long) # Ensure int64 | |
# return {"waveform": waveform, "label": label} | |
# train_test = train_test.map(preprocess_audio, batched=True) | |
# test_dataset = train_test.map(preprocess_audio) | |
# train_loader = DataLoader(train_test, batch_size=32, shuffle=True) | |
true_labels = train_dataset["label"] | |
predictions = [] | |
predictions = [random.randint(0, 1) for _ in range(len(true_labels))] | |
# with torch.no_grad(): | |
# for waveforms, labels in train_loader: | |
# waveforms, labels = waveforms.to(device), labels.to(device) | |
# outputs = model(waveforms) | |
# predicted_label = torch.argmax(F.softmax(outputs, dim=1), dim=1) | |
# true_labels.extend(labels.cpu().numpy()) | |
# predicted_labels.extend(predicted_label.cpu().numpy()) | |
#-------------------------------------------------------------------------------------------- | |
# YOUR MODEL INFERENCE STOPS HERE | |
#-------------------------------------------------------------------------------------------- | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results dictionary | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results |