File size: 7,378 Bytes
9ec63d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# First Agentic AI workflow with Groq and Llama-3.3 LLM(Free of cost) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# First let's do an import\n",
    "from dotenv import load_dotenv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Next it's time to load the API keys into environment variables\n",
    "\n",
    "load_dotenv(override=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Check the Groq API key\n",
    "\n",
    "import os\n",
    "groq_api_key = os.getenv('GROQ_API_KEY')\n",
    "\n",
    "if groq_api_key:\n",
    "    print(f\"GROQ API Key exists and begins {groq_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"GROQ API Key not set\")\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now - the all important import statement\n",
    "# If you get an import error - head over to troubleshooting guide\n",
    "\n",
    "from groq import Groq"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a Groq instance\n",
    "groq = Groq()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a list of messages in the familiar Groq format\n",
    "\n",
    "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now call it!\n",
    "\n",
    "response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
    "print(response.choices[0].message.content)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now - let's ask for a question:\n",
    "\n",
    "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
    "messages = [{\"role\": \"user\", \"content\": question}]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# ask it\n",
    "response = groq.chat.completions.create(\n",
    "    model=\"llama-3.3-70b-versatile\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "question = response.choices[0].message.content\n",
    "\n",
    "print(question)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# form a new messages list\n",
    "messages = [{\"role\": \"user\", \"content\": question}]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Ask it again\n",
    "\n",
    "response = groq.chat.completions.create(\n",
    "    model=\"llama-3.3-70b-versatile\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "answer = response.choices[0].message.content\n",
    "print(answer)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from IPython.display import Markdown, display\n",
    "\n",
    "display(Markdown(answer))\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
    "            <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
    "            First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
    "            Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
    "            Finally have 3 third LLM call propose the Agentic AI solution.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "# First create the messages:\n",
    "\n",
    "messages = [{\"role\": \"user\", \"content\": \"Give me a business area that might be ripe for an Agentic AI solution.\"}]\n",
    "\n",
    "# Then make the first call:\n",
    "\n",
    "response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
    "\n",
    "# Then read the business idea:\n",
    "\n",
    "business_idea = response.choices[0].message.content\n",
    "\n",
    "\n",
    "# And repeat!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "display(Markdown(business_idea))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Update the message with the business idea from previous step\n",
    "messages = [{\"role\": \"user\", \"content\": \"What is the pain point in the business area of \" + business_idea + \"?\"}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Make the second call\n",
    "response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
    "# Read the pain point\n",
    "pain_point = response.choices[0].message.content\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "display(Markdown(pain_point))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Make the third call\n",
    "messages = [{\"role\": \"user\", \"content\": \"What is the Agentic AI solution for the pain point of \" + pain_point + \"?\"}]\n",
    "response = groq.chat.completions.create(model='llama-3.3-70b-versatile', messages=messages)\n",
    "# Read the agentic solution\n",
    "agentic_solution = response.choices[0].message.content\n",
    "display(Markdown(agentic_solution))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}