Spaces:
Runtime error
Runtime error
File size: 10,900 Bytes
9ec63d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"BASED ON Week 1 Day 3 LAB Exercise\n",
"\n",
"This program evaluates different LLM outputs who are acting as customer service representative and are replying to an irritated customer.\n",
"OpenAI 40 mini, Gemini, Deepseek, Groq and Ollama are customer service representatives who respond to the email and OpenAI 3o mini analyzes all the responses and ranks their output based on different parameters."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Start with imports -\n",
"import os\n",
"import json\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"from anthropic import Anthropic\n",
"from IPython.display import Markdown, display"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Always remember to do this!\n",
"load_dotenv(override=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Print the key prefixes to help with any debugging\n",
"\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
"groq_api_key = os.getenv('GROQ_API_KEY')\n",
"\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
"\n",
"if google_api_key:\n",
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
"else:\n",
" print(\"Google API Key not set (and this is optional)\")\n",
"\n",
"if deepseek_api_key:\n",
" print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
"else:\n",
" print(\"DeepSeek API Key not set (and this is optional)\")\n",
"\n",
"if groq_api_key:\n",
" print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
"else:\n",
" print(\"Groq API Key not set (and this is optional)\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"persona = \"You are a customer support representative for a subscription bases software product.\"\n",
"email_content = '''Subject: Totally unacceptable experience\n",
"\n",
"Hi,\n",
"\n",
"I’ve already written to you twice about this, and still no response. I was charged again this month even after canceling my subscription. This is the third time this has happened.\n",
"\n",
"Honestly, I’m losing patience. If I don’t get a clear explanation and refund within 24 hours, I’m going to report this on social media and leave negative reviews.\n",
"\n",
"You’ve seriously messed up here. Fix this now.\n",
"\n",
"– Jordan\n",
"\n",
"'''"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"messages = [{\"role\":\"system\", \"content\": persona}]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"request = f\"\"\"A frustrated customer has written in about being repeatedly charged after canceling and threatened to escalate on social media.\n",
"Write a calm, empathetic, and professional response that Acknowledges their frustration, Apologizes sincerely,Explains the next steps to resolve the issue\n",
"Attempts to de-escalate the situation. Keep the tone respectful and proactive. Do not make excuses or blame the customer.\"\"\"\n",
"request += f\" Here is the email : {email_content}]\"\n",
"messages.append({\"role\": \"user\", \"content\": request})\n",
"print(messages)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"messages"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"competitors = []\n",
"answers = []\n",
"messages = [{\"role\": \"user\", \"content\": request}]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# The API we know well\n",
"openai = OpenAI()\n",
"model_name = \"gpt-4o-mini\"\n",
"\n",
"response = openai.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gemini = OpenAI(api_key=google_api_key, base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\")\n",
"model_name = \"gemini-2.0-flash\"\n",
"\n",
"response = gemini.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
"model_name = \"deepseek-chat\"\n",
"\n",
"response = deepseek.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"groq = OpenAI(api_key=groq_api_key, base_url=\"https://api.groq.com/openai/v1\")\n",
"model_name = \"llama-3.3-70b-versatile\"\n",
"\n",
"response = groq.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!ollama pull llama3.2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ollama = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
"model_name = \"llama3.2\"\n",
"\n",
"response = ollama.chat.completions.create(model=model_name, messages=messages)\n",
"answer = response.choices[0].message.content\n",
"\n",
"display(Markdown(answer))\n",
"competitors.append(model_name)\n",
"answers.append(answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# So where are we?\n",
"\n",
"print(competitors)\n",
"print(answers)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# It's nice to know how to use \"zip\"\n",
"for competitor, answer in zip(competitors, answers):\n",
" print(f\"Competitor: {competitor}\\n\\n{answer}\")\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# Let's bring this together - note the use of \"enumerate\"\n",
"\n",
"together = \"\"\n",
"for index, answer in enumerate(answers):\n",
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
" together += answer + \"\\n\\n\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(together)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"judge = f\"\"\"You are judging the performance of {len(competitors)} who are customer service representatives in a SaaS based subscription model company.\n",
"Each has responded to below grievnace email from the customer:\n",
"\n",
"{request}\n",
"\n",
"Evaluate the following customer support reply based on these criteria. Assign a score from 1 (very poor) to 5 (excellent) for each:\n",
"\n",
"1. Empathy:\n",
"Does the message acknowledge the customer’s frustration appropriately and sincerely?\n",
"\n",
"2. De-escalation:\n",
"Does the response effectively calm the customer and reduce the likelihood of social media escalation?\n",
"\n",
"3. Clarity:\n",
"Is the explanation of next steps clear and specific (e.g., refund process, timeline)?\n",
"\n",
"4. Professional Tone:\n",
"Is the message respectful, calm, and free from defensiveness or blame?\n",
"\n",
"Provide a one-sentence explanation for each score and a final overall rating with justification.\n",
"\n",
"Here are the responses from each competitor:\n",
"\n",
"{together}\n",
"\n",
"Do not include markdown formatting or code blocks. Also create a table with 3 columnds at the end containing rank, name and one line reason for the rank\"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(judge)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"judge_messages = [{\"role\": \"user\", \"content\": judge}]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Judgement time!\n",
"\n",
"openai = OpenAI()\n",
"response = openai.chat.completions.create(\n",
" model=\"o3-mini\",\n",
" messages=judge_messages,\n",
")\n",
"results = response.choices[0].message.content\n",
"print(results)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(results)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|