File size: 9,506 Bytes
5738ae0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import streamlit as st
from streamlit_js_eval import streamlit_js_eval
import choosingdata as choice
from dotenv import load_dotenv
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain_community.llms import HuggingFaceHub
def get_text_chunks(text):
"""
Splits the given text into chunks based on specified character settings.
Parameters:
- text (str): The text to be split into chunks.
Returns:
- list: A list of text chunks.
"""
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
"""
Generates a vector store from a list of text chunks using specified embeddings.
Parameters:
- text_chunks (list of str): Text segments to convert into vector embeddings.
Returns:
- FAISS: A FAISS vector store containing the embeddings of the text chunks.
"""
embeddings = OpenAIEmbeddings(
openai_api_base="https://openai.vocareum.com/v1",
)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
"""
Initializes a conversational retrieval chain that uses a large language model
for generating responses based on the provided vector store.
Parameters:
- vectorstore (FAISS): A vector store to be used for retrieving relevant content.
Returns:
- ConversationalRetrievalChain: An initialized conversational chain object.
"""
llm = ChatOpenAI(
model_name="gpt-4-1106-preview",
openai_api_base="https://openai.vocareum.com/v1",
)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
)
return conversation_chain
def set_prompt(text_block):
"""
Callback function that sets the chosen prompt in the session state.
Parameters:
- text_block (str): The prompt text selected by the user.
"""
st.session_state["messages"].append({"role": "user", "content": text_block})
st.session_state["prompts"] = text_block
def prompts():
"""
Renders clickable buttons for predefined prompts in the Streamlit application,
allowing the user to select a prompt to send to the conversation chain.
"""
potential_prompts = [
f"What is the meaning of the song {st.session_state['title']} by {st.session_state['artist']}?",
f"What is the most difficult English grammar point in the song {st.session_state['title']} by {st.session_state['artist']}? Can you explain it?",
f"What is the most common English word in the song {st.session_state['title']} by {st.session_state['artist']} (excluding stopwords)? Can you give some example sentences using that word?",
f"What is the most worth learning English phrase in the song {st.session_state['title']} by {st.session_state['artist']}? Can you explain it and provide practical example using the phrase?",
]
chosen_prompt = None
for index, text_block in enumerate(potential_prompts):
st.button(
f"Prompt {index + 1}: {text_block}", on_click=set_prompt, args=(text_block,)
)
def get_lyrics():
"""
Retrieves the lyrics stored in the session state.
Returns:
- str: The lyrics of the currently selected song.
"""
lyrics = st.session_state["lyrics"]
return lyrics
def page_title():
"""
Sets the title of the Streamlit page based on the selected song and artist.
"""
if st.session_state["title"] and st.session_state["artist"]:
st.title(
f'π΅ English Music Recommender π¬ ({st.session_state["title"]} by {st.session_state["artist"]})'
)
else:
st.title("π΅ English Music Recommender π¬")
def chat_sidebar():
"""
Renders the sidebar in the Streamlit application for selecting music preferences
and handling song recommendations.
"""
with st.sidebar:
st.title("π Music Preferences")
user_difficulty = st.sidebar.radio(
"Choose a difficulty level:", ("Easy", "Medium", "Hard")
)
user_danceability = st.sidebar.radio(
"How much do you want to dance?", ("Low", "Medium", "High")
)
user_valence = st.sidebar.radio(
"What energy are you feeling?", ("Negative", "Neutral", "Positive")
)
if not st.session_state["song_bool"]:
if st.sidebar.button("Submit"):
recommendations = choice.recommendation(
choice.df,
dance_choice=user_danceability,
valence_choice=user_valence,
difficulty_choice=user_difficulty,
)
st.session_state["title"] = recommendations["title"].values[0]
st.session_state["artist"] = recommendations["artist"].values[0]
st.session_state["lyrics"] = recommendations["lyrics"].values[0]
st.session_state["id"] = (
f'https://open.spotify.com/track/{recommendations["id"].values[0]}'
)
st.session_state["song_bool"] = True
st.rerun()
else:
if st.session_state["song_bool"]:
st.write("### We would recommend you...")
st.write(f"## {st.session_state['title']}")
st.write(f" by {st.session_state['artist']}")
st.markdown(
f'<a href="{st.session_state["id"]}"><img src="{st.session_state["icon"]}" alt="Clickable image" style="height:60px;"></a>',
unsafe_allow_html=True,
)
st.write("Please refresh the page for a new recommendation.")
if st.button("Reload page"):
streamlit_js_eval(js_expressions="parent.window.location.reload()")
def chat():
"""
Manages the chat interface in the Streamlit application, handling the conversation
flow and displaying the chat history.
"""
if st.session_state["lyrics"]:
text_chunks = get_text_chunks(get_lyrics())
vectorstore = get_vectorstore(text_chunks)
st.session_state.conversation = get_conversation_chain(vectorstore)
if len(st.session_state.messages) == 1:
message = st.session_state.messages[0]
with st.chat_message(message["role"]):
st.write(message["content"])
prompts()
else:
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
st.session_state.prompts = prompt
with st.chat_message("user"):
st.write(prompt)
if st.session_state.messages[-1]["role"] != "system":
with st.chat_message("system"):
with st.spinner("Generating response..."):
response = st.session_state.conversation.invoke(
{"question": st.session_state.prompts}
)
st.session_state.chat_history = response["chat_history"]
message = st.session_state.chat_history[-1]
st.write(message.content)
message = {"role": "system", "content": message.content}
st.session_state.messages.append(message)
else:
st.write("You can chat with GPT once a song has been recommended to you!")
def init():
"""
Initializes the session state variables used in the Streamlit application and
loads environment variables.
"""
load_dotenv()
if "title" not in st.session_state:
st.session_state["title"] = ""
if "artist" not in st.session_state:
st.session_state["artist"] = ""
if "icon" not in st.session_state:
st.session_state["icon"] = (
"https://thereceptionist.com/wp-content/uploads/2021/02/Podcast-Listen-On-Spotify-1.png"
)
if "id" not in st.session_state:
st.session_state["id"] = ""
if "song_bool" not in st.session_state:
st.session_state["song_bool"] = False
if "messages" not in st.session_state.keys():
st.session_state.messages = [
{
"role": "system",
"content": "What do you want to learn about? Here are some suggested prompts: ",
}
]
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
if "lyrics" not in st.session_state:
st.session_state["lyrics"] = ""
if "prompts" not in st.session_state:
st.session_state["prompts"] = ""
|