events / psychohistory.py
neuralworm's picture
plotly instead of matplotlib
42a21e8
raw
history blame
6 kB
import plotly.graph_objects as go # Import Plotly for interactive plots
from mpl_toolkits.mplot3d import Axes3D # Not needed anymore, but you can keep it if you use it elsewhere
import networkx as nx
import numpy as np
import json
import sys
import random
def generate_tree(current_x, current_y, depth, max_depth, max_nodes, x_range, G, parent=None, node_count_per_depth=None):
"""Generates a tree of nodes with positions adjusted on the x-axis, y-axis, and number of nodes on the z-axis."""
if node_count_per_depth is None:
node_count_per_depth = {}
if depth > max_depth:
return node_count_per_depth
if depth not in node_count_per_depth:
node_count_per_depth[depth] = 0
num_children = random.randint(1, max_nodes)
x_positions = [current_x + i * x_range / (num_children + 1) for i in range(num_children)]
for x in x_positions:
node_id = len(G.nodes)
node_count_per_depth[depth] += 1
prob = random.uniform(0, 1)
G.add_node(node_id, pos=(x, prob, depth))
if parent is not None:
G.add_edge(parent, node_id)
generate_tree(x, current_y + 1, depth + 1, max_depth, max_nodes, x_range, G, parent=node_id, node_count_per_depth=node_count_per_depth)
return node_count_per_depth
def build_graph_from_json(json_data, G):
"""Builds a graph from JSON data, handling subevents recursively."""
def add_event(parent_id, event_data, depth):
node_id = len(G.nodes)
prob = event_data['probability'] / 100.0
# Use event_number as the z-coordinate for better visualization
pos = (depth, prob, event_data['event_number'])
label = event_data['name']
G.add_node(node_id, pos=pos, label=label)
if parent_id is not None:
G.add_edge(parent_id, node_id) # Connect to parent
subevents = event_data.get('subevents', {}).get('event', [])
if not isinstance(subevents, list):
subevents = [subevents]
for subevent in subevents:
add_event(node_id, subevent, depth + 1) # Recursively add subevents
# Iterate through all top-level events
for event_data in json_data.get('events', {}).values():
add_event(None, event_data, 0) # Add each event as a root node
def find_paths(G):
"""Finds paths with highest/lowest probability and longest/shortest durations."""
best_path, worst_path = None, None
longest_path, shortest_path = None, None
best_mean_prob, worst_mean_prob = -1, float('inf')
max_duration, min_duration = -1, float('inf')
# Use nx.all_pairs_shortest_path for efficiency
all_paths_dict = dict(nx.all_pairs_shortest_path(G))
for source, paths_from_source in all_paths_dict.items():
for target, path in paths_from_source.items():
if source != target and all('pos' in G.nodes[node] for node in path):
probabilities = [G.nodes[node]['pos'][1] for node in path]
mean_prob = np.mean(probabilities)
if mean_prob > best_mean_prob:
best_mean_prob = mean_prob
best_path = path
if mean_prob < worst_mean_prob:
worst_mean_prob = mean_prob
worst_path = path
x_positions = [G.nodes[node]['pos'][0] for node in path]
duration = max(x_positions) - min(x_positions)
if duration > max_duration:
max_duration = duration
longest_path = path
if duration < min_duration and duration > 0: # Avoid paths with 0 duration
min_duration = duration
shortest_path = path
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path
def draw_graph_plotly(G, title="3D Event Tree", highlight_color='gray'):
"""Draws the graph in 3D using Plotly and returns the HTML string."""
pos = nx.get_node_attributes(G, 'pos')
labels = nx.get_node_attributes(G, 'label')
if not pos:
print("Graph is empty. No nodes to visualize.")
return ""
x_vals, y_vals, z_vals = zip(*pos.values())
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in pos.values()]
node_trace = go.Scatter3d(x=x_vals, y=y_vals, z=z_vals, mode='markers+text',
marker=dict(size=10, color=node_colors, line=dict(width=1, color='black')),
text=list(labels.values()), textposition='top center', hoverinfo='text')
edge_traces = []
for edge in G.edges():
x_start, y_start, z_start = pos[edge[0]]
x_end, y_end, z_end = pos[edge[1]]
edge_trace = go.Scatter3d(x=[x_start, x_end], y=[y_start, y_end], z=[z_start, z_end],
mode='lines', line=dict(width=2, color=highlight_color), hoverinfo='none')
edge_traces.append(edge_trace)
layout = go.Layout(scene=dict(xaxis_title='Time', yaxis_title='Probability', zaxis_title='Event Number'),
title=title)
fig = go.Figure(data=[node_trace] + edge_traces, layout=layout)
# Convert Plotly figure to HTML string
html_str = fig.to_html(full_html=False, include_plotlyjs='cdn')
return html_str
def main(json_data):
G = nx.DiGraph()
build_graph_from_json(json_data, G)
# Generate the HTML string for the Plotly graph
html_graph = draw_graph_plotly(G)
# ... (Rest of your code for finding paths)
if best_path:
best_path_graph = draw_graph_plotly(G.subgraph(best_path), title="Best Path", highlight_color='blue')
html_graph += best_path_graph
if worst_path:
worst_path_graph = draw_graph_plotly(G.subgraph(worst_path), title="Worst Path", highlight_color='red')
html_graph += worst_path_graph
# ... (Similar for longest_path and shortest_path)
return html_graph # Return the HTML string