Spaces:
Running
Running
Add conversion to 16k mono
#1
by
LuisVasquezBSC
- opened
app.py
CHANGED
|
@@ -5,6 +5,32 @@ from typing import List
|
|
| 5 |
import soundfile as sf
|
| 6 |
import gradio as gr
|
| 7 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
knn_vc = torch.hub.load('bshall/knn-vc', 'knn_vc', prematched=True, trust_repo=True, pretrained=True, device=device)
|
|
@@ -12,6 +38,11 @@ knn_vc = torch.hub.load('bshall/knn-vc', 'knn_vc', prematched=True, trust_repo=T
|
|
| 12 |
|
| 13 |
def convert_voice(src_wav_path:str, ref_wav_paths, top_k:int):
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
query_seq = knn_vc.get_features(src_wav_path)
|
| 16 |
matching_set = knn_vc.get_matching_set([ref_wav_paths])
|
| 17 |
out_wav = knn_vc.match(query_seq, matching_set, topk=int(top_k))
|
|
|
|
| 5 |
import soundfile as sf
|
| 6 |
import gradio as gr
|
| 7 |
import tempfile
|
| 8 |
+
import subprocess
|
| 9 |
+
|
| 10 |
+
def convert_to_16kHz_mono(input_file, output_file):
|
| 11 |
+
"""
|
| 12 |
+
Converts an audio file to 16KHz sample rate and single channel (mono) using ffmpeg.
|
| 13 |
+
|
| 14 |
+
Parameters:
|
| 15 |
+
input_file (str): Path to the input audio file.
|
| 16 |
+
output_file (str): Path to the output WAV file.
|
| 17 |
+
"""
|
| 18 |
+
try:
|
| 19 |
+
# Run the ffmpeg command
|
| 20 |
+
subprocess.run(['ffmpeg', '-y', '-i', input_file, '-ar', '16000', '-ac', '1', output_file], check=True)
|
| 21 |
+
print(f"Conversion complete: {output_file}")
|
| 22 |
+
return output_file
|
| 23 |
+
except subprocess.CalledProcessError as e:
|
| 24 |
+
print(f"An error occurred during conversion: {e}")
|
| 25 |
+
|
| 26 |
+
def create_temp_wav_file():
|
| 27 |
+
# Create a temporary file using NamedTemporaryFile
|
| 28 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
|
| 29 |
+
|
| 30 |
+
# Get the path of the temporary file
|
| 31 |
+
temp_file_path = temp_file.name
|
| 32 |
+
|
| 33 |
+
return temp_file_path
|
| 34 |
|
| 35 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 36 |
knn_vc = torch.hub.load('bshall/knn-vc', 'knn_vc', prematched=True, trust_repo=True, pretrained=True, device=device)
|
|
|
|
| 38 |
|
| 39 |
def convert_voice(src_wav_path:str, ref_wav_paths, top_k:int):
|
| 40 |
|
| 41 |
+
tmp_src_wav_path = create_temp_wav_file()
|
| 42 |
+
tmp_ref_wav_path = create_temp_wav_file()
|
| 43 |
+
src_wav_path = convert_to_16kHz_mono(src_wav_path, tmp_src_wav_path)
|
| 44 |
+
ref_wav_paths = convert_to_16kHz_mono(ref_wav_paths, tmp_ref_wav_path)
|
| 45 |
+
|
| 46 |
query_seq = knn_vc.get_features(src_wav_path)
|
| 47 |
matching_set = knn_vc.get_matching_set([ref_wav_paths])
|
| 48 |
out_wav = knn_vc.match(query_seq, matching_set, topk=int(top_k))
|