|
import os |
|
import spaces |
|
import gradio as gr |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer |
|
from threading import Thread |
|
from queue import Queue, Empty |
|
import logging |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
model_id = "meta-llama/Meta-Llama-3.1-8B" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.environ.get("MY_API_LLAMA_3_1")) |
|
|
|
model = None |
|
model_load_queue = Queue() |
|
|
|
def load_model(): |
|
global model |
|
try: |
|
if model is None: |
|
logger.info("Loading model...") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
token=os.environ.get("MY_API_LLAMA_3_1"), |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
low_cpu_mem_usage=True, |
|
load_in_8bit=True |
|
) |
|
logger.info("Model loaded successfully") |
|
model_load_queue.put(model) |
|
except Exception as e: |
|
logger.error(f"Error loading model: {str(e)}") |
|
model_load_queue.put(None) |
|
|
|
@spaces.GPU(duration=120) |
|
def generate_response(chat, kwargs): |
|
global model |
|
try: |
|
if model is None: |
|
logger.info("Starting model loading thread") |
|
Thread(target=load_model).start() |
|
model = model_load_queue.get(timeout=120) |
|
if model is None: |
|
return "Nie udało się załadować modelu. Proszę spróbować ponownie później." |
|
|
|
logger.info("Preparing input for generation") |
|
inputs = tokenizer(chat, return_tensors="pt").to(model.device) |
|
streamer = TextIteratorStreamer(tokenizer, timeout=120., skip_prompt=True, skip_special_tokens=True) |
|
|
|
if 'seed' in kwargs: |
|
del kwargs['seed'] |
|
|
|
generation_kwargs = dict(inputs, streamer=streamer, **kwargs) |
|
|
|
logger.info("Starting generation thread") |
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
output = "" |
|
try: |
|
for new_text in streamer: |
|
output += new_text |
|
if output.endswith("</s>"): |
|
output = output[:-4] |
|
break |
|
except Empty: |
|
logger.warning("Timeout occurred during generation") |
|
|
|
logger.info("Generation completed") |
|
return output |
|
except Exception as e: |
|
logger.error(f"Error in generate_response: {str(e)}") |
|
return f"Wystąpił błąd: {str(e)}" |
|
|
|
def function(prompt, history=[]): |
|
chat = "<s>" |
|
for user_prompt, bot_response in history: |
|
chat += f"[INST] {user_prompt} [/INST] {bot_response}</s> <s>" |
|
chat += f"[INST] {prompt} [/INST]" |
|
kwargs = dict( |
|
max_new_tokens=4096, |
|
do_sample=True, |
|
temperature=0.5, |
|
top_p=0.95, |
|
repetition_penalty=1.0 |
|
) |
|
|
|
return generate_response(chat, kwargs) |
|
|
|
interface = gr.ChatInterface( |
|
fn=function, |
|
chatbot=gr.Chatbot( |
|
avatar_images=None, |
|
container=False, |
|
show_copy_button=True, |
|
layout='bubble', |
|
render_markdown=True, |
|
line_breaks=True |
|
), |
|
css='h1 {font-size:22px;} h2 {font-size:20px;} h3 {font-size:18px;} h4 {font-size:16px;}', |
|
autofocus=True, |
|
fill_height=True, |
|
analytics_enabled=False, |
|
submit_btn='Chat', |
|
stop_btn=None, |
|
retry_btn=None, |
|
undo_btn=None, |
|
clear_btn=None |
|
) |
|
|
|
interface.launch(show_api=True, share=True) |