Spaces:
Running
Running
import os | |
import sys | |
if "APP_PATH" in os.environ: | |
app_path = os.path.abspath(os.environ["APP_PATH"]) | |
if os.getcwd() != app_path: | |
# fix sys.path for import | |
os.chdir(app_path) | |
if app_path not in sys.path: | |
sys.path.append(app_path) | |
import io | |
import tempfile | |
from typing import List | |
import pypdfium2 | |
import gradio as gr | |
from surya.common.surya.schema import TaskNames | |
from surya.models import load_predictors | |
from surya.debug.draw import draw_polys_on_image, draw_bboxes_on_image | |
from surya.debug.text import draw_text_on_image | |
from PIL import Image, ImageDraw | |
from surya.table_rec import TableResult | |
from surya.detection import TextDetectionResult | |
from surya.recognition import OCRResult | |
from surya.layout import LayoutResult | |
from surya.settings import settings | |
from surya.common.util import rescale_bbox, expand_bbox | |
# just copy from streamlit_app.py | |
def ocr_errors(pdf_file, page_count, sample_len=512, max_samples=10, max_pages=15): | |
from pdftext.extraction import plain_text_output | |
with tempfile.NamedTemporaryFile(suffix=".pdf") as f: | |
f.write(pdf_file.getvalue()) | |
f.seek(0) | |
# Sample the text from the middle of the PDF | |
page_middle = page_count // 2 | |
page_range = range( | |
max(page_middle - max_pages, 0), min(page_middle + max_pages, page_count) | |
) | |
text = plain_text_output(f.name, page_range=page_range) | |
sample_gap = len(text) // max_samples | |
if len(text) == 0 or sample_gap == 0: | |
return "This PDF has no text or very little text", ["no text"] | |
if sample_gap < sample_len: | |
sample_gap = sample_len | |
# Split the text into samples for the model | |
samples = [] | |
for i in range(0, len(text), sample_gap): | |
samples.append(text[i : i + sample_len]) | |
results = predictors["ocr_error"](samples) | |
label = "This PDF has good text." | |
if results.labels.count("bad") / len(results.labels) > 0.2: | |
label = "This PDF may have garbled or bad OCR text." | |
return label, results.labels | |
# just copy from streamlit_app.py | |
def text_detection(img) -> (Image.Image, TextDetectionResult): | |
text_pred = predictors["detection"]([img])[0] | |
text_polygons = [p.polygon for p in text_pred.bboxes] | |
det_img = draw_polys_on_image(text_polygons, img.copy()) | |
return det_img, text_pred | |
# just copy from streamlit_app.py | |
def layout_detection(img) -> (Image.Image, LayoutResult): | |
pred = predictors["layout"]([img])[0] | |
polygons = [p.polygon for p in pred.bboxes] | |
labels = [ | |
f"{p.label}-{p.position}-{round(p.top_k[p.label], 2)}" for p in pred.bboxes | |
] | |
layout_img = draw_polys_on_image( | |
polygons, img.copy(), labels=labels, label_font_size=18 | |
) | |
return layout_img, pred | |
# just copy from streamlit_app.py | |
def table_recognition( | |
img, highres_img, skip_table_detection: bool | |
) -> (Image.Image, List[TableResult]): | |
if skip_table_detection: | |
layout_tables = [(0, 0, highres_img.size[0], highres_img.size[1])] | |
table_imgs = [highres_img] | |
else: | |
_, layout_pred = layout_detection(img) | |
layout_tables_lowres = [ | |
line.bbox | |
for line in layout_pred.bboxes | |
if line.label in ["Table", "TableOfContents"] | |
] | |
table_imgs = [] | |
layout_tables = [] | |
for tb in layout_tables_lowres: | |
highres_bbox = rescale_bbox(tb, img.size, highres_img.size) | |
# Slightly expand the box | |
highres_bbox = expand_bbox(highres_bbox) | |
table_imgs.append(highres_img.crop(highres_bbox)) | |
layout_tables.append(highres_bbox) | |
table_preds = predictors["table_rec"](table_imgs) | |
table_img = img.copy() | |
for results, table_bbox in zip(table_preds, layout_tables): | |
adjusted_bboxes = [] | |
labels = [] | |
colors = [] | |
for item in results.cells: | |
adjusted_bboxes.append( | |
[ | |
(item.bbox[0] + table_bbox[0]), | |
(item.bbox[1] + table_bbox[1]), | |
(item.bbox[2] + table_bbox[0]), | |
(item.bbox[3] + table_bbox[1]), | |
] | |
) | |
labels.append(item.label) | |
if "Row" in item.label: | |
colors.append("blue") | |
else: | |
colors.append("red") | |
table_img = draw_bboxes_on_image( | |
adjusted_bboxes, | |
highres_img, | |
labels=labels, | |
label_font_size=18, | |
color=colors, | |
) | |
return table_img, table_preds | |
# just copy from streamlit_app.py | |
def ocr( | |
img: Image.Image, | |
highres_img: Image.Image, | |
skip_text_detection: bool = False, | |
recognize_math: bool = True, | |
with_bboxes: bool = True, | |
) -> (Image.Image, OCRResult): | |
if skip_text_detection: | |
img = highres_img | |
bboxes = [[[0, 0, img.width, img.height]]] | |
else: | |
bboxes = None | |
if with_bboxes: | |
tasks = [TaskNames.ocr_with_boxes] | |
else: | |
tasks = [TaskNames.ocr_without_boxes] | |
img_pred = predictors["recognition"]( | |
[img], | |
task_names=tasks, | |
bboxes=bboxes, | |
det_predictor=predictors["detection"], | |
highres_images=[highres_img], | |
math_mode=recognize_math, | |
return_words=True, | |
)[0] | |
bboxes = [line.bbox for line in img_pred.text_lines] | |
text = [line.text for line in img_pred.text_lines] | |
rec_img = draw_text_on_image(bboxes, text, img.size) | |
word_boxes = [] | |
for line in img_pred.text_lines: | |
if line.words: | |
word_boxes.extend([word.bbox for word in line.words]) | |
box_img = img.copy() | |
draw = ImageDraw.Draw(box_img) | |
for word_box in word_boxes: | |
draw.rectangle(word_box, outline="red", width=2) | |
return rec_img, img_pred, box_img | |
def open_pdf(pdf_file): | |
return pypdfium2.PdfDocument(pdf_file) | |
def page_counter(pdf_file): | |
doc = open_pdf(pdf_file) | |
doc_len = len(doc) | |
doc.close() | |
return doc_len | |
def get_page_image(pdf_file, page_num, dpi=settings.IMAGE_DPI): | |
doc = open_pdf(pdf_file) | |
renderer = doc.render( | |
pypdfium2.PdfBitmap.to_pil, | |
page_indices=[page_num - 1], | |
scale=dpi / 72, | |
) | |
png = list(renderer)[0] | |
png_image = png.convert("RGB") | |
doc.close() | |
return png_image | |
def get_uploaded_image(in_file): | |
return Image.open(in_file).convert("RGB") | |
# Load models if not already loaded in reload mode | |
predictors = load_predictors() | |
with gr.Blocks(title="Surya") as demo: | |
gr.Markdown(""" | |
# Surya OCR Demo | |
This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages. | |
Notes: | |
- This works best on documents with printed text. | |
- Preprocessing the image (e.g. increasing contrast) can improve results. | |
- If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease). | |
- This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list. | |
Find the project [here](https://github.com/VikParuchuri/surya). | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
in_file = gr.File(label="PDF file or image:", file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".webp"]) | |
in_num = gr.Slider(label="Page number", minimum=1, maximum=100, value=1, step=1) | |
in_img = gr.Image(label="Select page of Image", type="pil", sources=None) | |
ocr_errors_btn = gr.Button("Run bad PDF text detection") | |
text_det_btn = gr.Button("Run Text Detection") | |
layout_det_btn = gr.Button("Run Layout Analysis") | |
skip_text_detection_ckb = gr.Checkbox(label="Skip text detection", value=False, info="OCR only: Skip text detection and treat the whole image as a single line.") | |
recognize_math_ckb = gr.Checkbox(label="Recognize math in OCR", value=True, info="Enable math mode in OCR - this will recognize math.") | |
ocr_with_boxes_ckb = gr.Checkbox(label="OCR with boxes", value=True, info="Enable OCR with boxes - this will predict character-level boxes.") | |
text_rec_btn = gr.Button("Run OCR") | |
skip_table_detection_ckb = gr.Checkbox(label="Skip table detection", value=False, info="Table recognition only: Skip table detection and treat the whole image/page as a table.") | |
table_rec_btn = gr.Button("Run Table Rec") | |
with gr.Column(): | |
result_img = gr.Gallery(label="Result images", show_label=True, | |
elem_id="gallery", columns=[1], rows=[2], object_fit="contain", height="auto") | |
gr.HTML(""" | |
<style> | |
#gallery { | |
height: auto !important; | |
max-height: none !important; | |
overflow: visible !important; | |
} | |
#gallery .gallery-item { | |
flex-direction: column !important; | |
} | |
#gallery .gallery-item img { | |
width: 100% !important; | |
height: auto !important; | |
object-fit: contain !important; | |
} | |
</style> | |
""") | |
result_json = gr.JSON(label="Result json") | |
def show_image(file, num=1): | |
if file.endswith('.pdf'): | |
count = page_counter(file) | |
img = get_page_image(file, num, settings.IMAGE_DPI) | |
return [ | |
gr.update(visible=True, maximum=count), | |
gr.update(value=img)] | |
else: | |
img = get_uploaded_image(file) | |
return [ | |
gr.update(visible=False), | |
gr.update(value=img)] | |
in_file.upload( | |
fn=show_image, | |
inputs=[in_file], | |
outputs=[in_num, in_img], | |
) | |
in_num.change( | |
fn=show_image, | |
inputs=[in_file, in_num], | |
outputs=[in_num, in_img], | |
) | |
# Run Text Detection | |
def text_det_img(pil_image): | |
det_img, pred = text_detection(pil_image) | |
det_json = pred.model_dump(exclude=["heatmap", "affinity_map"]) | |
return ( | |
gr.update(label="Result image: text detected", value=[det_img], rows=[1], height=det_img.height), | |
gr.update(label="Result json: " + str(len(det_json['bboxes'])) + " text boxes detected", value=det_json) | |
) | |
text_det_btn.click( | |
fn=text_det_img, | |
inputs=[in_img], | |
outputs=[result_img, result_json] | |
) | |
# Run layout | |
def layout_det_img(pil_image): | |
layout_img, pred = layout_detection(pil_image) | |
layout_json = pred.model_dump(exclude=["segmentation_map"]) | |
return ( | |
gr.update(label="Result image: layout detected", value=[layout_img], rows=[1], height=layout_img.height), | |
gr.update(label="Result json: " + str(len(layout_json['bboxes'])) + " layout labels detected", value=layout_json) | |
) | |
layout_det_btn.click( | |
fn=layout_det_img, | |
inputs=[in_img], | |
outputs=[result_img, result_json] | |
) | |
# Run OCR | |
def text_rec_img(pil_image, in_file, page_number, skip_text_detection, recognize_math, ocr_with_boxes): | |
if in_file.endswith('.pdf'): | |
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES) | |
else: | |
pil_image_highres = pil_image | |
rec_img, pred, box_img = ocr( | |
pil_image, | |
pil_image_highres, | |
skip_text_detection, | |
recognize_math, | |
with_bboxes=ocr_with_boxes, | |
) | |
text_img = [(rec_img, "Text"), (box_img, "Boxes")] | |
text_json = pred.model_dump() | |
return ( | |
gr.update(label="Result image: text recognized", value=text_img, rows=[2], height=rec_img.height + box_img.height), | |
gr.update(label="Result json: " + str(len(text_json['text_lines'])) + " text lines recognized", value=text_json) | |
) | |
text_rec_btn.click( | |
fn=text_rec_img, | |
inputs=[in_img, in_file, in_num, skip_text_detection_ckb, recognize_math_ckb, ocr_with_boxes_ckb], | |
outputs=[result_img, result_json] | |
) | |
# Run Table Recognition | |
def table_rec_img(pil_image, in_file, page_number, skip_table_detection): | |
if in_file.endswith('.pdf'): | |
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES) | |
else: | |
pil_image_highres = pil_image | |
table_img, pred = table_recognition(pil_image, pil_image_highres, skip_table_detection) | |
table_json = [p.model_dump() for p in pred] | |
return ( | |
gr.update(label="Result image: table recognized", value=[table_img], rows=[1], height=table_img.height), | |
gr.update(label="Result json: " + str(len(table_json)) + " table tree recognized", value=table_json) | |
) | |
table_rec_btn.click( | |
fn=table_rec_img, | |
inputs=[in_img, in_file, in_num, skip_table_detection_ckb], | |
outputs=[result_img, result_json] | |
) | |
# Run bad PDF text detection | |
def ocr_errors_pdf(in_file): | |
if not in_file.endswith('.pdf'): | |
raise gr.Error("This feature only works with PDFs.", duration=5) | |
page_count = page_counter(in_file) | |
io_file = io.BytesIO(open(in_file.name, "rb").read()) | |
layout_label, layout_json = ocr_errors(io_file, page_count) | |
return ( | |
gr.update(label="Result image: NONE", value=None), | |
gr.update(label="Result json: " + layout_label, value=layout_json) | |
) | |
ocr_errors_btn.click( | |
fn=ocr_errors_pdf, | |
inputs=[in_file], | |
outputs=[result_img, result_json] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |