sparrow / app.py
yakilee's picture
Update app.py
dcb7d6a verified
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from PIL import Image
from datetime import datetime
import os
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
DESCRIPTION = "[Sparrow Qwen2-VL-7B Backend](https://github.com/katanaml/sparrow)"
def array_to_image_path(image_filepath, max_width=1250, max_height=1750):
if image_filepath is None:
raise ValueError("No image provided. Please upload an image before submitting.")
# Open the uploaded image using its filepath
img = Image.open(image_filepath)
# Extract the file extension from the uploaded file
input_image_extension = image_filepath.split('.')[-1].lower() # Extract extension from filepath
# Set file extension based on the original file, otherwise default to PNG
if input_image_extension in ['jpg', 'jpeg', 'png']:
file_extension = input_image_extension
else:
file_extension = 'png' # Default to PNG if extension is unavailable or invalid
# Get the current dimensions of the image
width, height = img.size
# Initialize new dimensions to current size
new_width, new_height = width, height
# Check if the image exceeds the maximum dimensions
if width > max_width or height > max_height:
# Calculate the new size, maintaining the aspect ratio
aspect_ratio = width / height
if width > max_width:
new_width = max_width
new_height = int(new_width / aspect_ratio)
if new_height > max_height:
new_height = max_height
new_width = int(new_height * aspect_ratio)
# Generate a unique filename using timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.{file_extension}"
# Save the image
img.save(filename)
# Get the full path of the saved image
full_path = os.path.abspath(filename)
return full_path, new_width, new_height
# Initialize the model and processor globally to optimize performance
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct",
torch_dtype="auto",
device_map="auto"
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
@spaces.GPU
def run_inference(input_imgs, text_input):
results = []
for image in input_imgs:
# Convert each image to the required format
image_path, width, height = array_to_image_path(image)
try:
# Prepare messages for each image
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path,
"resized_height": height,
"resized_width": width
},
{
"type": "text",
"text": text_input
}
]
}
]
# Prepare inputs for the model
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Generate inference output
generated_ids = model.generate(**inputs, max_new_tokens=4096)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
raw_output = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
results.append(raw_output[0])
print("Processed: " + image)
finally:
# Clean up the temporary image file
os.remove(image_path)
return results
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Qwen2-VL-7B Input"):
with gr.Row():
with gr.Column():
input_imgs = gr.Files(file_types=["image"], label="Upload Document Images")
text_input = gr.Textbox(label="Query")
submit_btn = gr.Button(value="Submit", variant="primary")
with gr.Column():
output_text = gr.Textbox(label="Response")
submit_btn.click(run_inference, [input_imgs, text_input], [output_text])
demo.queue(api_open=True)
demo.launch(debug=True)