Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
pretrained_model = "ykallan/SkuInfo-Qwen2.5-3B-Instruct" | |
model = AutoModelForCausalLM.from_pretrained(pretrained_model) | |
tokenizer = AutoTokenizer.from_pretrained(pretrained_model) | |
def respond( | |
message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": "在以下商品名称中抽取出品牌、型号、主商品,并以JSON格式返回。"}] | |
messages.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
model_inputs = tokenizer([input_ids], return_tensors="pt", padding=True) | |
generate_config = { | |
"max_new_tokens": 128 | |
} | |
generated_ids = model.generate(model_inputs.input_ids, **generate_config) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="在以下商品名称中抽取出品牌、型号、主商品,并以JSON格式返回。", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |