skuInfoExtract / app.py
ykallan's picture
Update app.py
d3cb5f2 verified
raw
history blame
2.05 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoModelForCausalLM, AutoTokenizer
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
pretrained_model = "ykallan/SkuInfo-Qwen2.5-3B-Instruct"
model = AutoModelForCausalLM.from_pretrained(pretrained_model)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
def respond(
message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": "在以下商品名称中抽取出品牌、型号、主商品,并以JSON格式返回。"}]
messages.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([input_ids], return_tensors="pt", padding=True)
generate_config = {
"max_new_tokens": 128
}
generated_ids = model.generate(model_inputs.input_ids, **generate_config)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="在以下商品名称中抽取出品牌、型号、主商品,并以JSON格式返回。", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()