yosen: adding test benchmark
#1
by
yl0628
- opened
- .gitignore +21 -24
- ML_MODELS_README.md +0 -168
- README.md +0 -14
- app.py +41 -957
- data/ground_truth/gt_1 copy.txt +0 -6
- data/ground_truth/gt_1.txt +0 -6
- data/package_name_catalog.json +0 -47
- ml_models.py +0 -295
- requirements.txt +4 -9
- upload_models_to_hf.py +0 -86
.gitignore
CHANGED
|
@@ -4,44 +4,41 @@ __pycache__/
|
|
| 4 |
*$py.class
|
| 5 |
*.so
|
| 6 |
.Python
|
| 7 |
-
*.egg-info/
|
| 8 |
-
dist/
|
| 9 |
-
build/
|
| 10 |
-
|
| 11 |
-
# Virtual environments
|
| 12 |
-
venv/
|
| 13 |
env/
|
|
|
|
| 14 |
ENV/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# IDE
|
| 17 |
.vscode/
|
| 18 |
.idea/
|
| 19 |
*.swp
|
| 20 |
*.swo
|
|
|
|
| 21 |
|
| 22 |
# OS
|
| 23 |
.DS_Store
|
| 24 |
Thumbs.db
|
| 25 |
|
| 26 |
-
# Training scripts and data (not needed for deployment)
|
| 27 |
-
train_conflict_model.py
|
| 28 |
-
generate_embeddings.py
|
| 29 |
-
Synthetic data.py
|
| 30 |
-
validation_tools.py
|
| 31 |
-
scripts/
|
| 32 |
-
synthetic_requirements_txt/
|
| 33 |
-
synthetic_requirements_dataset.json
|
| 34 |
-
|
| 35 |
-
# Problem3 folder (separate project)
|
| 36 |
-
problem3/
|
| 37 |
-
|
| 38 |
# Temporary files
|
| 39 |
*.tmp
|
| 40 |
*.log
|
| 41 |
|
| 42 |
-
# Model files (binary files not allowed in HF Spaces git - use XET or generate at runtime)
|
| 43 |
-
models/*.pkl
|
| 44 |
-
models/*.json
|
| 45 |
-
# Keep models directory but exclude contents
|
| 46 |
-
!models/.gitkeep
|
| 47 |
-
|
|
|
|
| 4 |
*$py.class
|
| 5 |
*.so
|
| 6 |
.Python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
env/
|
| 8 |
+
venv/
|
| 9 |
ENV/
|
| 10 |
+
build/
|
| 11 |
+
develop-eggs/
|
| 12 |
+
dist/
|
| 13 |
+
downloads/
|
| 14 |
+
eggs/
|
| 15 |
+
.eggs/
|
| 16 |
+
lib/
|
| 17 |
+
lib64/
|
| 18 |
+
parts/
|
| 19 |
+
sdist/
|
| 20 |
+
var/
|
| 21 |
+
wheels/
|
| 22 |
+
*.egg-info/
|
| 23 |
+
.installed.cfg
|
| 24 |
+
*.egg
|
| 25 |
+
|
| 26 |
+
# Gradio
|
| 27 |
+
flagged/
|
| 28 |
+
gradio_cached_examples/
|
| 29 |
|
| 30 |
# IDE
|
| 31 |
.vscode/
|
| 32 |
.idea/
|
| 33 |
*.swp
|
| 34 |
*.swo
|
| 35 |
+
*~
|
| 36 |
|
| 37 |
# OS
|
| 38 |
.DS_Store
|
| 39 |
Thumbs.db
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
# Temporary files
|
| 42 |
*.tmp
|
| 43 |
*.log
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ML_MODELS_README.md
DELETED
|
@@ -1,168 +0,0 @@
|
|
| 1 |
-
# ML Models Integration Guide
|
| 2 |
-
|
| 3 |
-
This document explains how to train and use the ML models for conflict prediction and package similarity.
|
| 4 |
-
|
| 5 |
-
## Overview
|
| 6 |
-
|
| 7 |
-
The project includes two ML models:
|
| 8 |
-
|
| 9 |
-
1. **Conflict Prediction Model**: A Random Forest classifier that predicts whether a set of dependencies will have conflicts
|
| 10 |
-
2. **Package Embeddings**: Pre-computed semantic embeddings for common Python packages for similarity matching
|
| 11 |
-
|
| 12 |
-
## Training the Models
|
| 13 |
-
|
| 14 |
-
### Step 1: Install Training Dependencies
|
| 15 |
-
|
| 16 |
-
```bash
|
| 17 |
-
pip install scikit-learn sentence-transformers numpy
|
| 18 |
-
```
|
| 19 |
-
|
| 20 |
-
### Step 2: Train Conflict Prediction Model
|
| 21 |
-
|
| 22 |
-
```bash
|
| 23 |
-
cd "code to upload"
|
| 24 |
-
python train_conflict_model.py
|
| 25 |
-
```
|
| 26 |
-
|
| 27 |
-
This will:
|
| 28 |
-
- Load the synthetic dataset (`synthetic_requirements_dataset.json`)
|
| 29 |
-
- Extract features from requirements
|
| 30 |
-
- Train a Random Forest classifier
|
| 31 |
-
- Save the model to `models/conflict_predictor.pkl`
|
| 32 |
-
- Display accuracy and feature importance
|
| 33 |
-
|
| 34 |
-
**Expected Output:**
|
| 35 |
-
- Model size: ~2-5 MB
|
| 36 |
-
- Test accuracy: ~85-95% (depending on dataset)
|
| 37 |
-
|
| 38 |
-
### Step 3: Generate Package Embeddings
|
| 39 |
-
|
| 40 |
-
```bash
|
| 41 |
-
python generate_embeddings.py
|
| 42 |
-
```
|
| 43 |
-
|
| 44 |
-
This will:
|
| 45 |
-
- Load a sentence transformer model
|
| 46 |
-
- Generate embeddings for common Python packages
|
| 47 |
-
- Save embeddings to `models/package_embeddings.json`
|
| 48 |
-
- Save model info to `models/embedding_info.json`
|
| 49 |
-
|
| 50 |
-
**Expected Output:**
|
| 51 |
-
- Embeddings file: ~5-10 MB
|
| 52 |
-
- Embedding dimension: 384
|
| 53 |
-
- Number of packages: ~100+
|
| 54 |
-
|
| 55 |
-
## Model Files Structure
|
| 56 |
-
|
| 57 |
-
After training, you should have:
|
| 58 |
-
|
| 59 |
-
```
|
| 60 |
-
code to upload/
|
| 61 |
-
βββ models/
|
| 62 |
-
β βββ conflict_predictor.pkl # Classification model
|
| 63 |
-
β βββ package_embeddings.json # Pre-computed embeddings
|
| 64 |
-
β βββ embedding_info.json # Model metadata
|
| 65 |
-
```
|
| 66 |
-
|
| 67 |
-
## Integration in Main App
|
| 68 |
-
|
| 69 |
-
The models are automatically loaded when available:
|
| 70 |
-
|
| 71 |
-
1. **Conflict Prediction**: Runs before detailed analysis to provide early warnings
|
| 72 |
-
2. **Package Similarity**: Enhances spell-checking with semantic matching
|
| 73 |
-
|
| 74 |
-
### Features
|
| 75 |
-
|
| 76 |
-
- **Graceful Fallback**: If models aren't available, the app works with rule-based methods
|
| 77 |
-
- **Lazy Loading**: Models load only when needed
|
| 78 |
-
- **Error Handling**: ML failures don't break the app
|
| 79 |
-
|
| 80 |
-
## Usage in Code
|
| 81 |
-
|
| 82 |
-
### Conflict Prediction
|
| 83 |
-
|
| 84 |
-
```python
|
| 85 |
-
from ml_models import ConflictPredictor
|
| 86 |
-
|
| 87 |
-
predictor = ConflictPredictor()
|
| 88 |
-
has_conflict, confidence = predictor.predict(requirements_text)
|
| 89 |
-
|
| 90 |
-
if has_conflict:
|
| 91 |
-
print(f"Conflict predicted with {confidence:.1%} confidence")
|
| 92 |
-
```
|
| 93 |
-
|
| 94 |
-
### Package Similarity
|
| 95 |
-
|
| 96 |
-
```python
|
| 97 |
-
from ml_models import PackageEmbeddings
|
| 98 |
-
|
| 99 |
-
embeddings = PackageEmbeddings()
|
| 100 |
-
similar = embeddings.find_similar("numpyy", top_k=3)
|
| 101 |
-
# Returns: [('numpy', 0.95), ('scipy', 0.72), ...]
|
| 102 |
-
|
| 103 |
-
best_match = embeddings.get_best_match("pandaz")
|
| 104 |
-
# Returns: 'pandas'
|
| 105 |
-
```
|
| 106 |
-
|
| 107 |
-
## Hugging Face Spaces Deployment
|
| 108 |
-
|
| 109 |
-
### Option 1: Include Models in Repo
|
| 110 |
-
|
| 111 |
-
1. Train models locally
|
| 112 |
-
2. Commit model files to the repo
|
| 113 |
-
3. Models load automatically on Spaces
|
| 114 |
-
|
| 115 |
-
**Pros**: Simple, no external dependencies
|
| 116 |
-
**Cons**: Larger repo size (~10-15 MB)
|
| 117 |
-
|
| 118 |
-
### Option 2: Upload to Hugging Face Hub
|
| 119 |
-
|
| 120 |
-
1. Train models locally
|
| 121 |
-
2. Upload to Hugging Face Hub:
|
| 122 |
-
```python
|
| 123 |
-
from huggingface_hub import upload_file
|
| 124 |
-
upload_file("models/conflict_predictor.pkl", repo_id="your-username/conflict-predictor")
|
| 125 |
-
```
|
| 126 |
-
3. Load from Hub in app:
|
| 127 |
-
```python
|
| 128 |
-
from huggingface_hub import hf_hub_download
|
| 129 |
-
model_path = hf_hub_download(repo_id="your-username/conflict-predictor", filename="conflict_predictor.pkl")
|
| 130 |
-
```
|
| 131 |
-
|
| 132 |
-
**Pros**: Smaller repo, version control for models
|
| 133 |
-
**Cons**: Requires internet connection at startup
|
| 134 |
-
|
| 135 |
-
## Performance
|
| 136 |
-
|
| 137 |
-
- **Conflict Prediction**: <10ms per prediction
|
| 138 |
-
- **Embedding Lookup**: <1ms (pre-computed) or ~50ms (on-the-fly)
|
| 139 |
-
- **Model Loading**: ~1-2 seconds at startup
|
| 140 |
-
|
| 141 |
-
## Troubleshooting
|
| 142 |
-
|
| 143 |
-
### Models Not Loading
|
| 144 |
-
|
| 145 |
-
- Check that `models/` directory exists
|
| 146 |
-
- Verify model files are present
|
| 147 |
-
- Check file permissions
|
| 148 |
-
|
| 149 |
-
### Low Prediction Accuracy
|
| 150 |
-
|
| 151 |
-
- Retrain with more data
|
| 152 |
-
- Adjust feature engineering
|
| 153 |
-
- Try different model parameters
|
| 154 |
-
|
| 155 |
-
### Embeddings Not Working
|
| 156 |
-
|
| 157 |
-
- Ensure `sentence-transformers` is installed
|
| 158 |
-
- Check internet connection (for first-time model download)
|
| 159 |
-
- Verify embeddings file format
|
| 160 |
-
|
| 161 |
-
## Future Improvements
|
| 162 |
-
|
| 163 |
-
- [ ] Train on larger, real-world dataset
|
| 164 |
-
- [ ] Add version-specific embeddings
|
| 165 |
-
- [ ] Implement online learning
|
| 166 |
-
- [ ] Add confidence intervals
|
| 167 |
-
- [ ] Support for custom model paths
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -18,13 +18,10 @@ A powerful tool to analyze and resolve Python package dependencies. Check for ve
|
|
| 18 |
|
| 19 |
- **Multiple Input Methods**: Library list, requirements.txt paste, or file upload
|
| 20 |
- **Conflict Detection**: Automatically detects version conflicts and compatibility issues
|
| 21 |
-
- **π€ AI-Powered Explanations**: Uses LLM to generate intelligent, natural language explanations for conflicts (with fallback to rule-based)
|
| 22 |
- **Dependency Resolution**: Uses pip's resolver to find compatible versions
|
| 23 |
- **Environment Aware**: Configure Python version, device (CPU/GPU), and OS
|
| 24 |
- **Analysis Modes**: Quick (top-level) or Deep (with transitive dependencies)
|
| 25 |
- **Resolution Strategies**: Latest compatible, stable/pinned, keep existing, or minimal changes
|
| 26 |
-
- **Spell Checking**: Auto-corrects common spelling mistakes in package names
|
| 27 |
-
- **Validation Utilities**: Benchmark against the bundled synthetic dataset and generate perturbed requirements for stress testing
|
| 28 |
|
| 29 |
## π How to Use
|
| 30 |
|
|
@@ -81,15 +78,6 @@ The tool automatically detects:
|
|
| 81 |
- **TensorFlow/Keras**: Validates TensorFlow/Keras version pairs
|
| 82 |
- **Version Conflicts**: Identifies incompatible version specifications
|
| 83 |
|
| 84 |
-
## π€ AI Explanations
|
| 85 |
-
|
| 86 |
-
When enabled, the tool uses LLM reasoning to provide:
|
| 87 |
-
- **Clear Explanations**: Natural language descriptions of what the conflict is
|
| 88 |
-
- **Why It Happens**: Technical reasons behind the conflict
|
| 89 |
-
- **How to Fix**: Actionable solutions with specific version recommendations
|
| 90 |
-
|
| 91 |
-
The LLM explanations use Hugging Face Inference API (free tier) and automatically fall back to rule-based explanations if the API is unavailable.
|
| 92 |
-
|
| 93 |
## π Example
|
| 94 |
|
| 95 |
**Input:**
|
|
@@ -124,8 +112,6 @@ pandas==2.0.3
|
|
| 124 |
- Deep mode may take longer for large dependency sets
|
| 125 |
- The tool works best with packages available on PyPI
|
| 126 |
- Platform-specific dependencies (e.g., CUDA) are detected but resolution may vary
|
| 127 |
-
- Run `python validation_tools.py` to benchmark the built-in compatibility checks against synthetic cases.
|
| 128 |
-
- Use `python scripts/perturb_requirements.py --help` to generate noisy/invalid requirements for robustness testing.
|
| 129 |
|
| 130 |
## π€ Contributing
|
| 131 |
|
|
|
|
| 18 |
|
| 19 |
- **Multiple Input Methods**: Library list, requirements.txt paste, or file upload
|
| 20 |
- **Conflict Detection**: Automatically detects version conflicts and compatibility issues
|
|
|
|
| 21 |
- **Dependency Resolution**: Uses pip's resolver to find compatible versions
|
| 22 |
- **Environment Aware**: Configure Python version, device (CPU/GPU), and OS
|
| 23 |
- **Analysis Modes**: Quick (top-level) or Deep (with transitive dependencies)
|
| 24 |
- **Resolution Strategies**: Latest compatible, stable/pinned, keep existing, or minimal changes
|
|
|
|
|
|
|
| 25 |
|
| 26 |
## π How to Use
|
| 27 |
|
|
|
|
| 78 |
- **TensorFlow/Keras**: Validates TensorFlow/Keras version pairs
|
| 79 |
- **Version Conflicts**: Identifies incompatible version specifications
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
## π Example
|
| 82 |
|
| 83 |
**Input:**
|
|
|
|
| 112 |
- Deep mode may take longer for large dependency sets
|
| 113 |
- The tool works best with packages available on PyPI
|
| 114 |
- Platform-specific dependencies (e.g., CUDA) are detected but resolution may vary
|
|
|
|
|
|
|
| 115 |
|
| 116 |
## π€ Contributing
|
| 117 |
|
app.py
CHANGED
|
@@ -9,19 +9,10 @@ import tempfile
|
|
| 9 |
import subprocess
|
| 10 |
from pathlib import Path
|
| 11 |
from typing import List, Dict, Tuple, Optional, Set
|
| 12 |
-
from difflib import get_close_matches
|
| 13 |
-
import requests
|
| 14 |
from packaging.requirements import Requirement
|
| 15 |
from packaging.specifiers import SpecifierSet
|
| 16 |
from packaging.version import Version
|
| 17 |
-
|
| 18 |
-
# Import ML models (with graceful fallback)
|
| 19 |
-
try:
|
| 20 |
-
from ml_models import ConflictPredictor, PackageEmbeddings
|
| 21 |
-
ML_AVAILABLE = True
|
| 22 |
-
except ImportError:
|
| 23 |
-
ML_AVAILABLE = False
|
| 24 |
-
print("Warning: ML models not available. Some features will be disabled.")
|
| 25 |
|
| 26 |
|
| 27 |
class DependencyParser:
|
|
@@ -294,554 +285,7 @@ class DependencyResolver:
|
|
| 294 |
Path(temp_req_file).unlink(missing_ok=True)
|
| 295 |
|
| 296 |
|
| 297 |
-
class CatalogValidator:
|
| 298 |
-
"""Validate package names against a simple ground-truth catalog."""
|
| 299 |
-
|
| 300 |
-
def __init__(self, catalog_path: Path = Path("data/package_name_catalog.json"), use_ml: bool = True):
|
| 301 |
-
self.catalog_path = catalog_path
|
| 302 |
-
self.valid_packages: Set[str] = set()
|
| 303 |
-
self.invalid_packages: Set[str] = set()
|
| 304 |
-
self.use_ml = use_ml and ML_AVAILABLE
|
| 305 |
-
self.embeddings = None
|
| 306 |
-
|
| 307 |
-
self._load_catalog()
|
| 308 |
-
|
| 309 |
-
# Load embeddings if available
|
| 310 |
-
if self.use_ml:
|
| 311 |
-
try:
|
| 312 |
-
self.embeddings = PackageEmbeddings()
|
| 313 |
-
except Exception as e:
|
| 314 |
-
print(f"Warning: Could not load embeddings: {e}")
|
| 315 |
-
self.use_ml = False
|
| 316 |
-
|
| 317 |
-
def _load_catalog(self) -> None:
|
| 318 |
-
if not self.catalog_path.exists():
|
| 319 |
-
return
|
| 320 |
-
try:
|
| 321 |
-
data = json.loads(self.catalog_path.read_text())
|
| 322 |
-
self.valid_packages = {p.lower() for p in data.get("valid_packages", [])}
|
| 323 |
-
self.invalid_packages = {p.lower() for p in data.get("invalid_packages", [])}
|
| 324 |
-
except Exception as exc:
|
| 325 |
-
# Keep going even if catalog is malformed
|
| 326 |
-
print(f"Warning: could not read catalog {self.catalog_path}: {exc}")
|
| 327 |
-
|
| 328 |
-
def suggest_correction(self, package_name: str, cutoff: float = 0.6) -> Optional[str]:
|
| 329 |
-
"""Suggest a corrected package name using fuzzy matching and embeddings."""
|
| 330 |
-
if not self.valid_packages:
|
| 331 |
-
return None
|
| 332 |
-
|
| 333 |
-
package_lower = package_name.lower()
|
| 334 |
-
|
| 335 |
-
# If it's already valid, no correction needed
|
| 336 |
-
if package_lower in self.valid_packages:
|
| 337 |
-
return None
|
| 338 |
-
|
| 339 |
-
# Try ML-based embedding similarity first (more accurate)
|
| 340 |
-
if self.use_ml and self.embeddings:
|
| 341 |
-
try:
|
| 342 |
-
best_match = self.embeddings.get_best_match(package_name, threshold=0.7)
|
| 343 |
-
if best_match and best_match in self.valid_packages:
|
| 344 |
-
return best_match
|
| 345 |
-
except Exception:
|
| 346 |
-
pass
|
| 347 |
-
|
| 348 |
-
# Fallback to fuzzy matching
|
| 349 |
-
matches = get_close_matches(
|
| 350 |
-
package_lower,
|
| 351 |
-
list(self.valid_packages),
|
| 352 |
-
n=1,
|
| 353 |
-
cutoff=cutoff
|
| 354 |
-
)
|
| 355 |
-
|
| 356 |
-
if matches:
|
| 357 |
-
return matches[0]
|
| 358 |
-
return None
|
| 359 |
-
|
| 360 |
-
def check_and_correct_packages(self, dependencies: List[Dict], auto_correct: bool = True) -> Tuple[List[Dict], List[str]]:
|
| 361 |
-
"""Check packages and optionally correct spelling mistakes.
|
| 362 |
-
|
| 363 |
-
Returns:
|
| 364 |
-
Tuple of (corrected_dependencies, warnings)
|
| 365 |
-
"""
|
| 366 |
-
corrected_deps = []
|
| 367 |
-
warnings: List[str] = []
|
| 368 |
-
seen: Set[str] = set()
|
| 369 |
-
max_warnings = 15
|
| 370 |
-
|
| 371 |
-
for dep in dependencies:
|
| 372 |
-
package = dep["package"]
|
| 373 |
-
package_lower = package.lower()
|
| 374 |
-
|
| 375 |
-
if package_lower in seen:
|
| 376 |
-
corrected_deps.append(dep)
|
| 377 |
-
continue
|
| 378 |
-
seen.add(package_lower)
|
| 379 |
-
|
| 380 |
-
# Check if it's explicitly invalid
|
| 381 |
-
if self.invalid_packages and package_lower in self.invalid_packages:
|
| 382 |
-
warnings.append(f"Package '{package}' is flagged as invalid in the catalog.")
|
| 383 |
-
if len(warnings) >= max_warnings:
|
| 384 |
-
corrected_deps.append(dep)
|
| 385 |
-
continue
|
| 386 |
-
|
| 387 |
-
# Try to suggest a correction
|
| 388 |
-
suggestion = self.suggest_correction(package)
|
| 389 |
-
if suggestion:
|
| 390 |
-
if auto_correct:
|
| 391 |
-
corrected_dep = dep.copy()
|
| 392 |
-
corrected_dep['package'] = suggestion
|
| 393 |
-
corrected_dep['original'] = corrected_dep['original'].replace(package, suggestion, 1)
|
| 394 |
-
corrected_deps.append(corrected_dep)
|
| 395 |
-
warnings.append(f" β Auto-corrected to '{suggestion}'")
|
| 396 |
-
else:
|
| 397 |
-
warnings.append(f" β Did you mean '{suggestion}'?")
|
| 398 |
-
else:
|
| 399 |
-
corrected_deps.append(dep)
|
| 400 |
-
continue
|
| 401 |
-
|
| 402 |
-
# Check if it's not in valid catalog and suggest correction
|
| 403 |
-
if self.valid_packages and package_lower not in self.valid_packages:
|
| 404 |
-
suggestion = self.suggest_correction(package)
|
| 405 |
-
if suggestion:
|
| 406 |
-
if auto_correct:
|
| 407 |
-
corrected_dep = dep.copy()
|
| 408 |
-
corrected_dep['package'] = suggestion
|
| 409 |
-
corrected_dep['original'] = corrected_dep['original'].replace(package, suggestion, 1)
|
| 410 |
-
corrected_deps.append(corrected_dep)
|
| 411 |
-
warnings.append(f"Package '{package}' not found. Auto-corrected to '{suggestion}'")
|
| 412 |
-
else:
|
| 413 |
-
warnings.append(f"Package '{package}' not found. Did you mean '{suggestion}'?")
|
| 414 |
-
if len(warnings) >= max_warnings:
|
| 415 |
-
break
|
| 416 |
-
else:
|
| 417 |
-
warnings.append(
|
| 418 |
-
f"Package '{package}' is not in the curated valid catalog. Check for typos or private packages."
|
| 419 |
-
)
|
| 420 |
-
corrected_deps.append(dep)
|
| 421 |
-
if len(warnings) >= max_warnings:
|
| 422 |
-
break
|
| 423 |
-
else:
|
| 424 |
-
# Package is valid, keep as-is
|
| 425 |
-
corrected_deps.append(dep)
|
| 426 |
-
|
| 427 |
-
if len(warnings) >= max_warnings:
|
| 428 |
-
warnings.append("Additional potential catalog issues omitted for brevity.")
|
| 429 |
-
|
| 430 |
-
return corrected_deps, warnings
|
| 431 |
-
|
| 432 |
-
def check_packages(self, dependencies: List[Dict]) -> List[str]:
|
| 433 |
-
"""Return warnings for packages that look suspicious or explicitly invalid."""
|
| 434 |
-
_, warnings = self.check_and_correct_packages(dependencies, auto_correct=False)
|
| 435 |
-
return warnings
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
class ProjectRequirementsGenerator:
|
| 439 |
-
"""Generate requirements.txt from project description using LLM."""
|
| 440 |
-
|
| 441 |
-
def __init__(self, use_llm: bool = True):
|
| 442 |
-
"""
|
| 443 |
-
Initialize project requirements generator.
|
| 444 |
-
|
| 445 |
-
Args:
|
| 446 |
-
use_llm: If True, uses Hugging Face Inference API
|
| 447 |
-
If False, uses rule-based suggestions
|
| 448 |
-
"""
|
| 449 |
-
self.use_llm = use_llm
|
| 450 |
-
# Using a better model for code generation
|
| 451 |
-
# Try to use a code generation model, fallback to GPT-2
|
| 452 |
-
self.api_url = "https://api-inference.huggingface.co/models/bigcode/starcoder"
|
| 453 |
-
self.fallback_url = "https://api-inference.huggingface.co/models/gpt2"
|
| 454 |
-
self.headers = {"Content-Type": "application/json"}
|
| 455 |
-
|
| 456 |
-
def generate_requirements(self, project_description: str) -> Tuple[str, str]:
|
| 457 |
-
"""
|
| 458 |
-
Generate requirements.txt from project description.
|
| 459 |
-
|
| 460 |
-
Args:
|
| 461 |
-
project_description: User's description of their project
|
| 462 |
-
|
| 463 |
-
Returns:
|
| 464 |
-
Tuple of (requirements_text, explanations_text)
|
| 465 |
-
"""
|
| 466 |
-
if not project_description or not project_description.strip():
|
| 467 |
-
return "", ""
|
| 468 |
-
|
| 469 |
-
# Always try rule-based first as it's more reliable
|
| 470 |
-
requirements, explanations = self._rule_based_suggestions(project_description)
|
| 471 |
-
|
| 472 |
-
# Try LLM to enhance the suggestions if enabled
|
| 473 |
-
if self.use_llm:
|
| 474 |
-
prompt = self._create_requirements_prompt(project_description)
|
| 475 |
-
llm_response = self._call_llm_for_requirements(prompt)
|
| 476 |
-
llm_requirements, llm_explanations = self._parse_llm_response(llm_response)
|
| 477 |
-
|
| 478 |
-
# If LLM generated valid requirements, use them (or merge with rule-based)
|
| 479 |
-
if llm_requirements and len(llm_requirements.strip()) > 10:
|
| 480 |
-
# Merge: prefer LLM but keep rule-based if LLM is incomplete
|
| 481 |
-
if len(llm_requirements) > len(requirements):
|
| 482 |
-
requirements = llm_requirements
|
| 483 |
-
explanations = llm_explanations if llm_explanations else explanations
|
| 484 |
-
else:
|
| 485 |
-
# Combine both
|
| 486 |
-
combined = set(requirements.split('\n'))
|
| 487 |
-
combined.update(llm_requirements.split('\n'))
|
| 488 |
-
requirements = '\n'.join([r for r in combined if r.strip()])
|
| 489 |
-
|
| 490 |
-
return requirements, explanations
|
| 491 |
-
|
| 492 |
-
def _create_requirements_prompt(self, description: str) -> str:
|
| 493 |
-
"""Create a prompt for generating requirements.txt."""
|
| 494 |
-
prompt = f"""You are a Python expert. Based on this project description, generate a requirements.txt file with appropriate Python packages.
|
| 495 |
-
|
| 496 |
-
Project Description:
|
| 497 |
-
{description}
|
| 498 |
-
|
| 499 |
-
Generate a requirements.txt file with:
|
| 500 |
-
1. Essential packages needed for this project
|
| 501 |
-
2. Appropriate version pins where necessary
|
| 502 |
-
3. Format: one package per line with version (e.g., "pandas==2.0.3" or "fastapi>=0.100.0")
|
| 503 |
-
|
| 504 |
-
For each package, provide a brief explanation of why it's needed.
|
| 505 |
-
|
| 506 |
-
Format your response as:
|
| 507 |
-
REQUIREMENTS:
|
| 508 |
-
package1==version1
|
| 509 |
-
package2>=version2
|
| 510 |
-
...
|
| 511 |
-
|
| 512 |
-
EXPLANATIONS:
|
| 513 |
-
- package1: Brief explanation of why it's needed
|
| 514 |
-
- package2: Brief explanation of why it's needed
|
| 515 |
-
...
|
| 516 |
-
|
| 517 |
-
Keep it practical and focused on the most important dependencies (5-15 packages typically).
|
| 518 |
-
"""
|
| 519 |
-
return prompt
|
| 520 |
-
|
| 521 |
-
def _call_llm_for_requirements(self, prompt: str) -> str:
|
| 522 |
-
"""Call LLM API to generate requirements."""
|
| 523 |
-
try:
|
| 524 |
-
# Try the code generation model first
|
| 525 |
-
payload = {
|
| 526 |
-
"inputs": prompt,
|
| 527 |
-
"parameters": {
|
| 528 |
-
"max_new_tokens": 500,
|
| 529 |
-
"temperature": 0.3,
|
| 530 |
-
"return_full_text": False
|
| 531 |
-
}
|
| 532 |
-
}
|
| 533 |
-
|
| 534 |
-
response = requests.post(
|
| 535 |
-
self.api_url,
|
| 536 |
-
headers=self.headers,
|
| 537 |
-
json=payload,
|
| 538 |
-
timeout=15
|
| 539 |
-
)
|
| 540 |
-
|
| 541 |
-
if response.status_code == 200:
|
| 542 |
-
result = response.json()
|
| 543 |
-
if isinstance(result, list) and len(result) > 0:
|
| 544 |
-
generated_text = result[0].get('generated_text', '')
|
| 545 |
-
if generated_text:
|
| 546 |
-
return generated_text.strip()
|
| 547 |
-
|
| 548 |
-
# Fallback to GPT-2
|
| 549 |
-
response = requests.post(
|
| 550 |
-
self.fallback_url,
|
| 551 |
-
headers=self.headers,
|
| 552 |
-
json=payload,
|
| 553 |
-
timeout=15
|
| 554 |
-
)
|
| 555 |
-
|
| 556 |
-
if response.status_code == 200:
|
| 557 |
-
result = response.json()
|
| 558 |
-
if isinstance(result, list) and len(result) > 0:
|
| 559 |
-
generated_text = result[0].get('generated_text', '')
|
| 560 |
-
if generated_text:
|
| 561 |
-
return generated_text.strip()
|
| 562 |
-
|
| 563 |
-
return ""
|
| 564 |
-
|
| 565 |
-
except Exception as e:
|
| 566 |
-
print(f"LLM API error: {e}")
|
| 567 |
-
return ""
|
| 568 |
-
|
| 569 |
-
def _parse_llm_response(self, response: str) -> Tuple[str, str]:
|
| 570 |
-
"""Parse LLM response to extract requirements and explanations."""
|
| 571 |
-
if not response:
|
| 572 |
-
return "", ""
|
| 573 |
-
|
| 574 |
-
requirements = []
|
| 575 |
-
explanations = []
|
| 576 |
-
|
| 577 |
-
# Try to extract REQUIREMENTS section
|
| 578 |
-
if "REQUIREMENTS:" in response:
|
| 579 |
-
req_section = response.split("REQUIREMENTS:")[1]
|
| 580 |
-
if "EXPLANATIONS:" in req_section:
|
| 581 |
-
req_section = req_section.split("EXPLANATIONS:")[0]
|
| 582 |
-
|
| 583 |
-
for line in req_section.strip().split('\n'):
|
| 584 |
-
line = line.strip()
|
| 585 |
-
if line and not line.startswith('#') and not line.startswith('-'):
|
| 586 |
-
# Clean up the line
|
| 587 |
-
line = line.split('#')[0].strip() # Remove comments
|
| 588 |
-
if line and ('==' in line or '>=' in line or '<=' in line or '>' in line or '<' in line or not any(c in line for c in '=<>')):
|
| 589 |
-
requirements.append(line)
|
| 590 |
-
|
| 591 |
-
# Try to extract EXPLANATIONS section
|
| 592 |
-
if "EXPLANATIONS:" in response:
|
| 593 |
-
exp_section = response.split("EXPLANATIONS:")[1]
|
| 594 |
-
for line in exp_section.strip().split('\n'):
|
| 595 |
-
line = line.strip()
|
| 596 |
-
if line and line.startswith('-'):
|
| 597 |
-
explanations.append(line[1:].strip())
|
| 598 |
-
|
| 599 |
-
# If parsing failed, try to extract package names from the response
|
| 600 |
-
if not requirements:
|
| 601 |
-
# Look for lines that look like package specifications
|
| 602 |
-
for line in response.split('\n'):
|
| 603 |
-
line = line.strip()
|
| 604 |
-
# Check if it looks like a package (has letters, maybe numbers, maybe version)
|
| 605 |
-
if line and ('==' in line or '>=' in line or '<=' in line):
|
| 606 |
-
parts = line.split()
|
| 607 |
-
if parts:
|
| 608 |
-
requirements.append(parts[0])
|
| 609 |
-
|
| 610 |
-
requirements_text = '\n'.join(requirements[:20]) # Limit to 20 packages
|
| 611 |
-
explanations_text = '\n'.join(explanations[:20]) if explanations else ""
|
| 612 |
-
|
| 613 |
-
return requirements_text, explanations_text
|
| 614 |
-
|
| 615 |
-
def _rule_based_suggestions(self, description: str) -> Tuple[str, str]:
|
| 616 |
-
"""Generate rule-based suggestions when LLM is unavailable."""
|
| 617 |
-
desc_lower = description.lower()
|
| 618 |
-
suggestions = []
|
| 619 |
-
explanations = []
|
| 620 |
-
|
| 621 |
-
# RAG / Chatbot / PDF processing
|
| 622 |
-
if any(word in desc_lower for word in ['rag', 'chatbot', 'pdf', 'document', 'query', 'retrieval']):
|
| 623 |
-
suggestions.append("streamlit>=1.28.0")
|
| 624 |
-
suggestions.append("langchain>=0.1.0")
|
| 625 |
-
suggestions.append("pypdf>=3.17.0")
|
| 626 |
-
if 'openai' in desc_lower or 'gpt' in desc_lower:
|
| 627 |
-
suggestions.append("openai>=1.0.0")
|
| 628 |
-
else:
|
| 629 |
-
suggestions.append("openai>=1.0.0")
|
| 630 |
-
suggestions.append("chromadb>=0.4.0")
|
| 631 |
-
explanations.append("- streamlit: Build interactive web apps for your chatbot interface")
|
| 632 |
-
explanations.append("- langchain: Framework for building RAG applications")
|
| 633 |
-
explanations.append("- pypdf: PDF parsing and text extraction")
|
| 634 |
-
explanations.append("- openai: OpenAI API for LLM integration")
|
| 635 |
-
explanations.append("- chromadb: Vector database for document embeddings")
|
| 636 |
-
|
| 637 |
-
# Web frameworks
|
| 638 |
-
if any(word in desc_lower for word in ['web', 'api', 'server', 'backend', 'rest']):
|
| 639 |
-
suggestions.append("fastapi>=0.100.0")
|
| 640 |
-
suggestions.append("uvicorn[standard]>=0.23.0")
|
| 641 |
-
explanations.append("- fastapi: Modern web framework for building APIs")
|
| 642 |
-
explanations.append("- uvicorn: ASGI server to run FastAPI applications")
|
| 643 |
-
|
| 644 |
-
# Data science
|
| 645 |
-
if any(word in desc_lower for word in ['data', 'analysis', 'csv', 'excel', 'dataframe', 'pandas']):
|
| 646 |
-
suggestions.append("pandas>=2.0.0")
|
| 647 |
-
suggestions.append("numpy>=1.24.0")
|
| 648 |
-
explanations.append("- pandas: Data manipulation and analysis")
|
| 649 |
-
explanations.append("- numpy: Numerical computing library")
|
| 650 |
-
|
| 651 |
-
# Machine learning
|
| 652 |
-
if any(word in desc_lower for word in ['ml', 'machine learning', 'model', 'train', 'neural', 'deep learning', 'ai']):
|
| 653 |
-
suggestions.append("scikit-learn>=1.3.0")
|
| 654 |
-
if 'pytorch' in desc_lower or 'torch' in desc_lower:
|
| 655 |
-
suggestions.append("torch>=2.0.0")
|
| 656 |
-
explanations.append("- torch: PyTorch deep learning framework")
|
| 657 |
-
elif 'tensorflow' in desc_lower or 'tf' in desc_lower:
|
| 658 |
-
suggestions.append("tensorflow>=2.13.0")
|
| 659 |
-
explanations.append("- tensorflow: TensorFlow deep learning framework")
|
| 660 |
-
explanations.append("- scikit-learn: Machine learning algorithms and utilities")
|
| 661 |
-
|
| 662 |
-
# Database
|
| 663 |
-
if any(word in desc_lower for word in ['database', 'sql', 'db', 'postgres', 'mysql']):
|
| 664 |
-
suggestions.append("sqlalchemy>=2.0.0")
|
| 665 |
-
explanations.append("- sqlalchemy: SQL toolkit and ORM")
|
| 666 |
-
|
| 667 |
-
# HTTP requests
|
| 668 |
-
if any(word in desc_lower for word in ['http', 'request', 'fetch', 'download']):
|
| 669 |
-
suggestions.append("requests>=2.31.0")
|
| 670 |
-
explanations.append("- requests: HTTP library for making API calls")
|
| 671 |
-
|
| 672 |
-
# Environment variables
|
| 673 |
-
if any(word in desc_lower for word in ['config', 'env', 'environment', 'settings']):
|
| 674 |
-
suggestions.append("python-dotenv>=1.0.0")
|
| 675 |
-
explanations.append("- python-dotenv: Load environment variables from .env file")
|
| 676 |
-
|
| 677 |
-
# If no specific matches, provide common packages
|
| 678 |
-
if not suggestions:
|
| 679 |
-
suggestions.append("requests>=2.31.0")
|
| 680 |
-
suggestions.append("python-dotenv>=1.0.0")
|
| 681 |
-
explanations.append("- requests: HTTP library for API calls and web requests")
|
| 682 |
-
explanations.append("- python-dotenv: Manage environment variables and configuration")
|
| 683 |
-
|
| 684 |
-
requirements_text = '\n'.join(suggestions) if suggestions else ""
|
| 685 |
-
explanations_text = '\n'.join(explanations) if explanations else ""
|
| 686 |
-
|
| 687 |
-
return requirements_text, explanations_text
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
class ExplanationEngine:
|
| 691 |
-
"""Generate intelligent explanations for dependency conflicts using LLM."""
|
| 692 |
-
|
| 693 |
-
def __init__(self, use_llm: bool = True):
|
| 694 |
-
"""
|
| 695 |
-
Initialize explanation engine.
|
| 696 |
-
|
| 697 |
-
Args:
|
| 698 |
-
use_llm: If True, uses Hugging Face Inference API (free tier)
|
| 699 |
-
If False, uses rule-based explanations only
|
| 700 |
-
"""
|
| 701 |
-
self.use_llm = use_llm
|
| 702 |
-
# Using Hugging Face Inference API (free tier)
|
| 703 |
-
self.api_url = "https://api-inference.huggingface.co/models/gpt2"
|
| 704 |
-
self.headers = {"Content-Type": "application/json"}
|
| 705 |
-
|
| 706 |
-
def generate_explanation(self, conflict: Dict, dependencies: List[Dict]) -> Dict:
|
| 707 |
-
"""
|
| 708 |
-
Generate a detailed explanation for a conflict.
|
| 709 |
-
|
| 710 |
-
Args:
|
| 711 |
-
conflict: Conflict dictionary with type, packages, message, etc.
|
| 712 |
-
dependencies: Full list of dependencies for context
|
| 713 |
-
|
| 714 |
-
Returns:
|
| 715 |
-
Dictionary with explanation, why_it_happens, how_to_fix
|
| 716 |
-
"""
|
| 717 |
-
# Build context about the conflict
|
| 718 |
-
conflict_type = conflict.get('type', 'unknown')
|
| 719 |
-
packages = conflict.get('packages', [conflict.get('package', 'unknown')])
|
| 720 |
-
message = conflict.get('message', '')
|
| 721 |
-
details = conflict.get('details', {})
|
| 722 |
-
|
| 723 |
-
# Create prompt for LLM
|
| 724 |
-
prompt = self._create_prompt(conflict, dependencies)
|
| 725 |
-
|
| 726 |
-
# Get LLM explanation
|
| 727 |
-
explanation_text = self._call_llm(prompt) if self.use_llm else self._fallback_explanation(prompt)
|
| 728 |
-
|
| 729 |
-
# Parse and structure the explanation
|
| 730 |
-
return {
|
| 731 |
-
'summary': message,
|
| 732 |
-
'explanation': explanation_text,
|
| 733 |
-
'why_it_happens': self._extract_why(explanation_text, conflict),
|
| 734 |
-
'how_to_fix': self._extract_fix(explanation_text, conflict),
|
| 735 |
-
'packages_involved': packages,
|
| 736 |
-
'severity': conflict.get('severity', 'medium')
|
| 737 |
-
}
|
| 738 |
-
|
| 739 |
-
def _create_prompt(self, conflict: Dict, dependencies: List[Dict]) -> str:
|
| 740 |
-
"""Create a prompt for the LLM."""
|
| 741 |
-
conflict_type = conflict.get('type', 'unknown')
|
| 742 |
-
packages = conflict.get('packages', [conflict.get('package', 'unknown')])
|
| 743 |
-
message = conflict.get('message', '')
|
| 744 |
-
details = conflict.get('details', {})
|
| 745 |
-
|
| 746 |
-
# Get relevant dependency info
|
| 747 |
-
relevant_deps = [d for d in dependencies if d['package'] in packages]
|
| 748 |
-
|
| 749 |
-
prompt = f"""You are a Python dependency expert. Explain this dependency conflict clearly:
|
| 750 |
-
|
| 751 |
-
Conflict: {message}
|
| 752 |
-
Type: {conflict_type}
|
| 753 |
-
Packages involved: {', '.join(packages)}
|
| 754 |
-
|
| 755 |
-
Dependency details:
|
| 756 |
-
"""
|
| 757 |
-
for dep in relevant_deps:
|
| 758 |
-
prompt += f"- {dep['package']}: {dep['specifier'] or 'no version specified'}\n"
|
| 759 |
-
|
| 760 |
-
if details:
|
| 761 |
-
prompt += f"\nVersion constraints: {json.dumps(details)}\n"
|
| 762 |
-
|
| 763 |
-
prompt += """
|
| 764 |
-
Provide a clear, concise explanation that:
|
| 765 |
-
1. Explains what the conflict is in simple terms
|
| 766 |
-
2. Explains why this conflict happens (technical reason)
|
| 767 |
-
3. Suggests how to fix it (specific version recommendations)
|
| 768 |
-
|
| 769 |
-
Keep it under 150 words and use plain language.
|
| 770 |
-
"""
|
| 771 |
-
return prompt
|
| 772 |
-
|
| 773 |
-
def _call_llm(self, prompt: str) -> str:
|
| 774 |
-
"""
|
| 775 |
-
Call LLM API to generate explanation.
|
| 776 |
-
Falls back to rule-based explanation if API fails.
|
| 777 |
-
"""
|
| 778 |
-
try:
|
| 779 |
-
# Try Hugging Face Inference API (free tier)
|
| 780 |
-
payload = {
|
| 781 |
-
"inputs": prompt,
|
| 782 |
-
"parameters": {
|
| 783 |
-
"max_new_tokens": 200,
|
| 784 |
-
"temperature": 0.7,
|
| 785 |
-
"return_full_text": False
|
| 786 |
-
}
|
| 787 |
-
}
|
| 788 |
-
|
| 789 |
-
response = requests.post(
|
| 790 |
-
self.api_url,
|
| 791 |
-
headers=self.headers,
|
| 792 |
-
json=payload,
|
| 793 |
-
timeout=10
|
| 794 |
-
)
|
| 795 |
-
|
| 796 |
-
if response.status_code == 200:
|
| 797 |
-
result = response.json()
|
| 798 |
-
if isinstance(result, list) and len(result) > 0:
|
| 799 |
-
generated_text = result[0].get('generated_text', '')
|
| 800 |
-
if generated_text:
|
| 801 |
-
return generated_text.strip()
|
| 802 |
-
|
| 803 |
-
# If API fails, fall back to rule-based
|
| 804 |
-
return self._fallback_explanation(prompt)
|
| 805 |
-
|
| 806 |
-
except Exception as e:
|
| 807 |
-
# Fall back to rule-based explanation
|
| 808 |
-
return self._fallback_explanation(prompt)
|
| 809 |
-
|
| 810 |
-
def _fallback_explanation(self, prompt: str) -> str:
|
| 811 |
-
"""Generate rule-based explanation when LLM is unavailable."""
|
| 812 |
-
# Extract key info from prompt
|
| 813 |
-
if "pytorch-lightning" in prompt.lower() and "torch" in prompt.lower():
|
| 814 |
-
return """PyTorch Lightning 2.0+ requires PyTorch 2.0 or higher because it uses new PyTorch APIs and features that don't exist in version 1.x. The conflict happens because you're trying to use a newer version of PyTorch Lightning with an older version of PyTorch. To fix this, either upgrade PyTorch to 2.0+ or downgrade PyTorch Lightning to 1.x."""
|
| 815 |
-
|
| 816 |
-
elif "fastapi" in prompt.lower() and "pydantic" in prompt.lower():
|
| 817 |
-
return """FastAPI 0.78.x was built for Pydantic v1, which has a different API than Pydantic v2. The conflict occurs because Pydantic v2 introduced breaking changes that FastAPI 0.78 doesn't support. To fix this, either upgrade FastAPI to 0.99+ (which supports Pydantic v2) or downgrade Pydantic to v1.x."""
|
| 818 |
-
|
| 819 |
-
elif "tensorflow" in prompt.lower() and "keras" in prompt.lower():
|
| 820 |
-
return """Keras 3.0+ requires TensorFlow 2.x because it was redesigned to work with TensorFlow 2's eager execution and new features. TensorFlow 1.x uses a different execution model that Keras 3.0 doesn't support. To fix this, upgrade TensorFlow to 2.x or downgrade Keras to 2.x."""
|
| 821 |
-
|
| 822 |
-
elif "duplicate" in prompt.lower():
|
| 823 |
-
return """You have the same package specified multiple times with different versions. This creates ambiguity about which version should be installed. To fix this, remove duplicate entries and keep only one version specification per package."""
|
| 824 |
-
|
| 825 |
-
else:
|
| 826 |
-
return """This dependency conflict occurs due to incompatible version requirements between packages. Review the version constraints and ensure all packages are compatible with each other. Consider updating to compatible versions or using a dependency resolver."""
|
| 827 |
-
|
| 828 |
-
def _extract_why(self, explanation: str, conflict: Dict) -> str:
|
| 829 |
-
"""Extract the 'why it happens' part from explanation."""
|
| 830 |
-
# Simple extraction - look for sentences explaining the reason
|
| 831 |
-
sentences = explanation.split('.')
|
| 832 |
-
why_sentences = [s.strip() for s in sentences if any(word in s.lower() for word in ['because', 'due to', 'requires', 'needs', 'since'])]
|
| 833 |
-
return '. '.join(why_sentences[:2]) + '.' if why_sentences else "Version constraints are incompatible."
|
| 834 |
-
|
| 835 |
-
def _extract_fix(self, explanation: str, conflict: Dict) -> str:
|
| 836 |
-
"""Extract the 'how to fix' part from explanation."""
|
| 837 |
-
# Simple extraction - look for fix suggestions
|
| 838 |
-
sentences = explanation.split('.')
|
| 839 |
-
fix_sentences = [s.strip() for s in sentences if any(word in s.lower() for word in ['upgrade', 'downgrade', 'fix', 'change', 'update', 'remove'])]
|
| 840 |
-
return '. '.join(fix_sentences[:2]) + '.' if fix_sentences else "Adjust version constraints to compatible versions."
|
| 841 |
-
|
| 842 |
-
|
| 843 |
def process_dependencies(
|
| 844 |
-
project_description: str,
|
| 845 |
library_list: str,
|
| 846 |
requirements_text: str,
|
| 847 |
uploaded_file,
|
|
@@ -849,28 +293,10 @@ def process_dependencies(
|
|
| 849 |
device: str,
|
| 850 |
os_type: str,
|
| 851 |
mode: str,
|
| 852 |
-
resolution_strategy: str
|
| 853 |
-
|
| 854 |
-
use_ml_prediction: bool = True,
|
| 855 |
-
use_ml_spellcheck: bool = True,
|
| 856 |
-
show_ml_details: bool = False
|
| 857 |
-
) -> Tuple[str, str, str]:
|
| 858 |
"""Main processing function for Gradio interface."""
|
| 859 |
|
| 860 |
-
# Generate requirements from project description if provided
|
| 861 |
-
generated_requirements = ""
|
| 862 |
-
generation_explanations = ""
|
| 863 |
-
if project_description and project_description.strip():
|
| 864 |
-
generator = ProjectRequirementsGenerator(use_llm=True)
|
| 865 |
-
generated_requirements, generation_explanations = generator.generate_requirements(project_description)
|
| 866 |
-
|
| 867 |
-
# If we generated requirements, add them to the requirements_text
|
| 868 |
-
if generated_requirements:
|
| 869 |
-
if requirements_text:
|
| 870 |
-
requirements_text = generated_requirements + "\n" + requirements_text
|
| 871 |
-
else:
|
| 872 |
-
requirements_text = generated_requirements
|
| 873 |
-
|
| 874 |
# Collect dependencies from all sources
|
| 875 |
all_dependencies = []
|
| 876 |
|
|
@@ -889,71 +315,17 @@ def process_dependencies(
|
|
| 889 |
# Parse uploaded file
|
| 890 |
if uploaded_file:
|
| 891 |
try:
|
| 892 |
-
|
| 893 |
-
if isinstance(uploaded_file, str):
|
| 894 |
-
file_path = uploaded_file
|
| 895 |
-
else:
|
| 896 |
-
# If it's a file object, get the path
|
| 897 |
-
file_path = uploaded_file.name if hasattr(uploaded_file, 'name') else str(uploaded_file)
|
| 898 |
-
|
| 899 |
-
with open(file_path, 'r') as f:
|
| 900 |
content = f.read()
|
| 901 |
parser = DependencyParser()
|
| 902 |
deps = parser.parse_requirements_text(content)
|
| 903 |
all_dependencies.extend(deps)
|
| 904 |
except Exception as e:
|
| 905 |
-
return f"Error reading file: {str(e)}", ""
|
| 906 |
|
| 907 |
if not all_dependencies:
|
| 908 |
-
return "Please provide at least one input: library list, requirements text, or uploaded file.", ""
|
| 909 |
|
| 910 |
-
catalog_validator = CatalogValidator(use_ml=use_ml_spellcheck and ML_AVAILABLE)
|
| 911 |
-
# Auto-correct spelling mistakes in package names
|
| 912 |
-
all_dependencies, catalog_warnings = catalog_validator.check_and_correct_packages(all_dependencies, auto_correct=True)
|
| 913 |
-
|
| 914 |
-
# ML-based conflict prediction (pre-analysis)
|
| 915 |
-
ml_conflict_prediction = None
|
| 916 |
-
ml_confidence = 0.0
|
| 917 |
-
ml_details = ""
|
| 918 |
-
if use_ml_prediction and ML_AVAILABLE:
|
| 919 |
-
try:
|
| 920 |
-
predictor = ConflictPredictor()
|
| 921 |
-
requirements_text_for_ml = '\n'.join([d['original'] for d in all_dependencies])
|
| 922 |
-
has_conflict, confidence = predictor.predict(requirements_text_for_ml)
|
| 923 |
-
ml_conflict_prediction = has_conflict
|
| 924 |
-
ml_confidence = confidence
|
| 925 |
-
|
| 926 |
-
# Build ML details output
|
| 927 |
-
ml_details = f"""
|
| 928 |
-
### ML Model Details
|
| 929 |
-
|
| 930 |
-
**Conflict Prediction Model:**
|
| 931 |
-
- Prediction: {"Conflict Detected" if has_conflict else "No Conflict"}
|
| 932 |
-
- Confidence: {confidence:.2%}
|
| 933 |
-
- Model Type: Random Forest Classifier
|
| 934 |
-
- Features Analyzed: Package presence, version specificity, conflict patterns
|
| 935 |
-
|
| 936 |
-
"""
|
| 937 |
-
if show_ml_details:
|
| 938 |
-
# Get feature importance or additional details
|
| 939 |
-
ml_details += f"""
|
| 940 |
-
**Raw Prediction:**
|
| 941 |
-
- Has Conflict: {has_conflict}
|
| 942 |
-
- Confidence Score: {confidence:.4f}
|
| 943 |
-
- Probability Distribution: Conflict={confidence:.2%}, No Conflict={1-confidence:.2%}
|
| 944 |
-
|
| 945 |
-
"""
|
| 946 |
-
|
| 947 |
-
if has_conflict and confidence > 0.7:
|
| 948 |
-
catalog_warnings.append(
|
| 949 |
-
f"ML Prediction: High probability ({confidence:.1%}) of conflicts detected"
|
| 950 |
-
)
|
| 951 |
-
except Exception as e:
|
| 952 |
-
print(f"ML prediction error: {e}")
|
| 953 |
-
ml_details = f"ML Prediction Error: {str(e)}"
|
| 954 |
-
elif use_ml_prediction and not ML_AVAILABLE:
|
| 955 |
-
ml_details = "ML models not available. Train models using `train_conflict_model.py` to enable this feature."
|
| 956 |
-
|
| 957 |
# Build dependency graph
|
| 958 |
resolver = DependencyResolver(python_version=python_version, platform=os_type, device=device)
|
| 959 |
deep_mode = (mode == "Deep (with transitive dependencies)")
|
|
@@ -962,208 +334,52 @@ def process_dependencies(
|
|
| 962 |
# Check compatibility
|
| 963 |
is_compatible, issues = resolver.check_compatibility(graph)
|
| 964 |
|
| 965 |
-
# Convert string issues to structured format for LLM explanations
|
| 966 |
-
structured_issues = []
|
| 967 |
-
for issue in issues:
|
| 968 |
-
if isinstance(issue, str):
|
| 969 |
-
# Parse the issue string to extract package names and type
|
| 970 |
-
issue_dict = {
|
| 971 |
-
'type': 'version_incompatibility',
|
| 972 |
-
'message': issue,
|
| 973 |
-
'severity': 'high',
|
| 974 |
-
'details': {}
|
| 975 |
-
}
|
| 976 |
-
|
| 977 |
-
# Extract package names from known patterns
|
| 978 |
-
packages = []
|
| 979 |
-
issue_lower = issue.lower()
|
| 980 |
-
|
| 981 |
-
# Check for specific known conflicts
|
| 982 |
-
if 'pytorch-lightning' in issue_lower and 'torch' in issue_lower:
|
| 983 |
-
packages = ['pytorch-lightning', 'torch']
|
| 984 |
-
issue_dict['type'] = 'version_incompatibility'
|
| 985 |
-
# Extract version details
|
| 986 |
-
for dep in all_dependencies:
|
| 987 |
-
if dep['package'] in packages:
|
| 988 |
-
issue_dict['details'][dep['package']] = dep.get('specifier', '')
|
| 989 |
-
elif 'fastapi' in issue_lower and 'pydantic' in issue_lower:
|
| 990 |
-
packages = ['fastapi', 'pydantic']
|
| 991 |
-
issue_dict['type'] = 'version_incompatibility'
|
| 992 |
-
for dep in all_dependencies:
|
| 993 |
-
if dep['package'] in packages:
|
| 994 |
-
issue_dict['details'][dep['package']] = dep.get('specifier', '')
|
| 995 |
-
elif 'tensorflow' in issue_lower and 'keras' in issue_lower:
|
| 996 |
-
packages = ['tensorflow', 'keras']
|
| 997 |
-
issue_dict['type'] = 'version_incompatibility'
|
| 998 |
-
for dep in all_dependencies:
|
| 999 |
-
if dep['package'] in packages:
|
| 1000 |
-
issue_dict['details'][dep['package']] = dep.get('specifier', '')
|
| 1001 |
-
elif 'conflict in' in issue_lower:
|
| 1002 |
-
# Duplicate package conflict
|
| 1003 |
-
pkg = issue.split('Conflict in')[1].split(':')[0].strip()
|
| 1004 |
-
packages = [pkg]
|
| 1005 |
-
issue_dict['type'] = 'duplicate'
|
| 1006 |
-
issue_dict['package'] = pkg
|
| 1007 |
-
else:
|
| 1008 |
-
# Generic: try to find packages mentioned in the issue
|
| 1009 |
-
for dep in all_dependencies:
|
| 1010 |
-
if dep['package'] in issue_lower:
|
| 1011 |
-
packages.append(dep['package'])
|
| 1012 |
-
|
| 1013 |
-
if packages:
|
| 1014 |
-
issue_dict['packages'] = packages
|
| 1015 |
-
else:
|
| 1016 |
-
issue_dict['package'] = 'unknown'
|
| 1017 |
-
issue_dict['packages'] = []
|
| 1018 |
-
|
| 1019 |
-
structured_issues.append(issue_dict)
|
| 1020 |
-
else:
|
| 1021 |
-
structured_issues.append(issue)
|
| 1022 |
-
|
| 1023 |
-
# Generate LLM explanations if enabled
|
| 1024 |
-
explanations = []
|
| 1025 |
-
if use_llm_explanations and structured_issues:
|
| 1026 |
-
explanation_engine = ExplanationEngine(use_llm=use_llm_explanations)
|
| 1027 |
-
for issue in structured_issues:
|
| 1028 |
-
try:
|
| 1029 |
-
explanation = explanation_engine.generate_explanation(issue, all_dependencies)
|
| 1030 |
-
explanations.append(explanation)
|
| 1031 |
-
except Exception as e:
|
| 1032 |
-
# If explanation generation fails, just use the issue message
|
| 1033 |
-
explanations.append({
|
| 1034 |
-
'summary': issue.get('message', str(issue)),
|
| 1035 |
-
'explanation': issue.get('message', str(issue)),
|
| 1036 |
-
'why_it_happens': 'Unable to generate explanation.',
|
| 1037 |
-
'how_to_fix': 'Review version constraints.',
|
| 1038 |
-
'packages_involved': issue.get('packages', []),
|
| 1039 |
-
'severity': issue.get('severity', 'medium')
|
| 1040 |
-
})
|
| 1041 |
-
|
| 1042 |
# Resolve dependencies
|
| 1043 |
-
resolved_text,
|
| 1044 |
-
warnings = catalog_warnings + resolver_warnings
|
| 1045 |
|
| 1046 |
# Build output message
|
| 1047 |
output_parts = []
|
| 1048 |
output_parts.append("## Dependency Analysis Results\n\n")
|
| 1049 |
|
| 1050 |
-
# Show generated requirements if project description was provided
|
| 1051 |
-
if project_description and project_description.strip() and generated_requirements:
|
| 1052 |
-
output_parts.append("### Generated Requirements from Project Description\n\n")
|
| 1053 |
-
output_parts.append(f"**Project:** {project_description[:100]}{'...' if len(project_description) > 100 else ''}\n\n")
|
| 1054 |
-
output_parts.append("**Suggested Packages:**\n")
|
| 1055 |
-
output_parts.append("```\n")
|
| 1056 |
-
output_parts.append(generated_requirements)
|
| 1057 |
-
output_parts.append("\n```\n\n")
|
| 1058 |
-
|
| 1059 |
-
if generation_explanations:
|
| 1060 |
-
output_parts.append("**Why these packages?**\n")
|
| 1061 |
-
output_parts.append(generation_explanations)
|
| 1062 |
-
output_parts.append("\n\n")
|
| 1063 |
-
|
| 1064 |
-
output_parts.append("---\n\n")
|
| 1065 |
-
|
| 1066 |
-
# Show ML prediction if available
|
| 1067 |
-
if ML_AVAILABLE and ml_conflict_prediction is not None:
|
| 1068 |
-
if ml_conflict_prediction:
|
| 1069 |
-
output_parts.append(f"### ML Prediction: Potential Conflicts Detected (Confidence: {ml_confidence:.1%})\n\n")
|
| 1070 |
-
else:
|
| 1071 |
-
output_parts.append(f"### ML Prediction: Low Conflict Risk (Confidence: {ml_confidence:.1%})\n\n")
|
| 1072 |
-
|
| 1073 |
if issues:
|
| 1074 |
-
output_parts.append("### Compatibility Issues Found:\n")
|
| 1075 |
-
|
| 1076 |
-
|
| 1077 |
-
for i, (issue, explanation) in enumerate(zip(issues, explanations), 1):
|
| 1078 |
-
output_parts.append(f"#### Issue #{i}: {explanation['summary']}\n\n")
|
| 1079 |
-
output_parts.append(f"**Explanation:**\n{explanation['explanation']}\n\n")
|
| 1080 |
-
output_parts.append(f"**Why this happens:**\n{explanation['why_it_happens']}\n\n")
|
| 1081 |
-
output_parts.append(f"**How to fix:**\n{explanation['how_to_fix']}\n\n")
|
| 1082 |
-
output_parts.append("---\n\n")
|
| 1083 |
-
else:
|
| 1084 |
-
# Fallback to simple list
|
| 1085 |
-
for issue in issues:
|
| 1086 |
-
output_parts.append(f"- {issue}\n")
|
| 1087 |
-
output_parts.append("\n")
|
| 1088 |
-
|
| 1089 |
-
# Separate corrections from other warnings
|
| 1090 |
-
corrections = [w for w in warnings if "Auto-corrected" in w or "β" in w]
|
| 1091 |
-
other_warnings = [w for w in warnings if w not in corrections]
|
| 1092 |
-
|
| 1093 |
-
if corrections:
|
| 1094 |
-
output_parts.append("### Spelling Corrections:\n")
|
| 1095 |
-
for correction in corrections:
|
| 1096 |
-
output_parts.append(f"- {correction}\n")
|
| 1097 |
output_parts.append("\n")
|
| 1098 |
|
| 1099 |
-
if
|
| 1100 |
-
output_parts.append("### Warnings:\n")
|
| 1101 |
-
for warning in
|
| 1102 |
output_parts.append(f"- {warning}\n")
|
| 1103 |
output_parts.append("\n")
|
| 1104 |
|
| 1105 |
if is_compatible and not issues:
|
| 1106 |
-
output_parts.append("### No compatibility issues detected!\n\n")
|
| 1107 |
|
| 1108 |
-
output_parts.append(f"### Resolved Requirements ({len(all_dependencies)} packages):\n")
|
| 1109 |
output_parts.append("```\n")
|
| 1110 |
output_parts.append(resolved_text)
|
| 1111 |
output_parts.append("\n```\n")
|
| 1112 |
|
| 1113 |
-
|
| 1114 |
-
if show_ml_details and ml_details:
|
| 1115 |
-
output_parts.append(ml_details)
|
| 1116 |
-
|
| 1117 |
-
return ''.join(output_parts), resolved_text, ml_details
|
| 1118 |
|
| 1119 |
|
| 1120 |
# Gradio Interface
|
| 1121 |
def create_interface():
|
| 1122 |
"""Create and return the Gradio interface."""
|
| 1123 |
-
import gradio as gr
|
| 1124 |
|
| 1125 |
-
with gr.Blocks(title="Python Dependency Compatibility Board") as app:
|
| 1126 |
gr.Markdown("""
|
| 1127 |
-
# Python Dependency Compatibility Board
|
| 1128 |
|
| 1129 |
-
Analyze and resolve Python package dependencies
|
| 1130 |
-
|
| 1131 |
-
|
| 1132 |
-
|
| 1133 |
-
| Feature | Status | Description |
|
| 1134 |
-
|---------|--------|-------------|
|
| 1135 |
-
| **LLM Requirements Generation** | Active | Generate requirements.txt from project description using AI |
|
| 1136 |
-
| **LLM Reasoning** | Active | AI-powered natural language explanations for conflicts |
|
| 1137 |
-
| **ML Conflict Prediction** | {"Available" if ML_AVAILABLE else "Not Loaded"} | Machine learning model predicts conflicts before analysis |
|
| 1138 |
-
| **Embedding-Based Spell Check** | {"Available" if ML_AVAILABLE else "Not Loaded"} | Semantic similarity matching for package names |
|
| 1139 |
-
| **Auto-Correction** | Active | Automatically fixes spelling mistakes in package names |
|
| 1140 |
-
| **Dependency Resolution** | Active | Resolves conflicts using pip's resolver |
|
| 1141 |
|
|
|
|
| 1142 |
""")
|
| 1143 |
|
| 1144 |
-
# Project Description Input (Optional)
|
| 1145 |
-
with gr.Row():
|
| 1146 |
-
with gr.Column(scale=3):
|
| 1147 |
-
project_description_input = gr.Textbox(
|
| 1148 |
-
label="Project Description (Optional) - AI-Powered Requirements Generation",
|
| 1149 |
-
placeholder="Describe your project idea here...\nExample: 'I want to build a web API for data analysis with machine learning capabilities'",
|
| 1150 |
-
lines=4,
|
| 1151 |
-
info="Describe your project and AI will suggest required libraries with explanations.",
|
| 1152 |
-
value=""
|
| 1153 |
-
)
|
| 1154 |
-
with gr.Column(scale=1):
|
| 1155 |
-
generate_requirements_btn = gr.Button(
|
| 1156 |
-
"Generate Requirements from Description",
|
| 1157 |
-
variant="secondary",
|
| 1158 |
-
size="lg"
|
| 1159 |
-
)
|
| 1160 |
-
generated_requirements_display = gr.Markdown(
|
| 1161 |
-
label="Generated Requirements Preview",
|
| 1162 |
-
value="AI-generated requirements preview will appear here after clicking the button above."
|
| 1163 |
-
)
|
| 1164 |
-
|
| 1165 |
-
gr.Markdown("---")
|
| 1166 |
-
|
| 1167 |
with gr.Row():
|
| 1168 |
with gr.Column(scale=1):
|
| 1169 |
gr.Markdown("### Input Methods")
|
|
@@ -1225,33 +441,6 @@ def create_interface():
|
|
| 1225 |
info="How to resolve version conflicts"
|
| 1226 |
)
|
| 1227 |
|
| 1228 |
-
gr.Markdown("---")
|
| 1229 |
-
gr.Markdown("### AI & ML Features")
|
| 1230 |
-
|
| 1231 |
-
use_llm = gr.Checkbox(
|
| 1232 |
-
label="**LLM Reasoning** - AI Explanations",
|
| 1233 |
-
value=True,
|
| 1234 |
-
info="Generate intelligent, natural language explanations for conflicts using LLM"
|
| 1235 |
-
)
|
| 1236 |
-
|
| 1237 |
-
use_ml_prediction = gr.Checkbox(
|
| 1238 |
-
label="**ML Conflict Prediction**",
|
| 1239 |
-
value=True,
|
| 1240 |
-
info=f"{'Model available - Predicts conflicts before detailed analysis' if ML_AVAILABLE else 'Model not loaded - Train models to enable'}"
|
| 1241 |
-
)
|
| 1242 |
-
|
| 1243 |
-
use_ml_spellcheck = gr.Checkbox(
|
| 1244 |
-
label="**ML Spell Check** (Embedding-based)",
|
| 1245 |
-
value=True,
|
| 1246 |
-
info=f"{'Model available - Uses semantic similarity for better corrections' if ML_AVAILABLE else 'Model not loaded - Train models to enable'}"
|
| 1247 |
-
)
|
| 1248 |
-
|
| 1249 |
-
show_ml_details = gr.Checkbox(
|
| 1250 |
-
label="Show ML Model Details",
|
| 1251 |
-
value=False,
|
| 1252 |
-
info="Display raw ML predictions and confidence scores"
|
| 1253 |
-
)
|
| 1254 |
-
|
| 1255 |
process_btn = gr.Button("Analyze & Resolve Dependencies", variant="primary", size="lg")
|
| 1256 |
|
| 1257 |
with gr.Row():
|
|
@@ -1261,7 +450,7 @@ def create_interface():
|
|
| 1261 |
)
|
| 1262 |
|
| 1263 |
with gr.Row():
|
| 1264 |
-
with gr.Column(
|
| 1265 |
resolved_output = gr.Textbox(
|
| 1266 |
label="Resolved requirements.txt",
|
| 1267 |
lines=15,
|
|
@@ -1273,40 +462,9 @@ def create_interface():
|
|
| 1273 |
value=None,
|
| 1274 |
visible=True
|
| 1275 |
)
|
| 1276 |
-
|
| 1277 |
-
with gr.Column(scale=1):
|
| 1278 |
-
ml_output = gr.Markdown(
|
| 1279 |
-
label="ML Model Output",
|
| 1280 |
-
value="ML predictions will appear here when enabled...",
|
| 1281 |
-
visible=True
|
| 1282 |
-
)
|
| 1283 |
-
|
| 1284 |
-
def generate_requirements_only(project_desc):
|
| 1285 |
-
"""Generate requirements from project description only."""
|
| 1286 |
-
if not project_desc or not project_desc.strip():
|
| 1287 |
-
return "", ""
|
| 1288 |
-
|
| 1289 |
-
generator = ProjectRequirementsGenerator(use_llm=True)
|
| 1290 |
-
requirements, explanations = generator.generate_requirements(project_desc)
|
| 1291 |
-
|
| 1292 |
-
if requirements:
|
| 1293 |
-
output = f"## Generated Requirements\n\n"
|
| 1294 |
-
output += f"**Project:** {project_desc[:100]}{'...' if len(project_desc) > 100 else ''}\n\n"
|
| 1295 |
-
output += "**Suggested Packages:**\n```\n"
|
| 1296 |
-
output += requirements
|
| 1297 |
-
output += "\n```\n\n"
|
| 1298 |
-
if explanations:
|
| 1299 |
-
output += "**Why these packages?**\n"
|
| 1300 |
-
output += explanations
|
| 1301 |
-
# Also return the requirements text for the textbox
|
| 1302 |
-
return output, requirements
|
| 1303 |
-
else:
|
| 1304 |
-
error_msg = "Could not generate requirements. Please try a more detailed description or check your connection."
|
| 1305 |
-
return error_msg, ""
|
| 1306 |
|
| 1307 |
def process_and_download(*args):
|
| 1308 |
-
|
| 1309 |
-
result_text, resolved_text, ml_details = process_dependencies(*args)
|
| 1310 |
|
| 1311 |
# Create a temporary file for download
|
| 1312 |
temp_file = None
|
|
@@ -1318,108 +476,33 @@ def create_interface():
|
|
| 1318 |
except Exception as e:
|
| 1319 |
print(f"Error creating download file: {e}")
|
| 1320 |
|
| 1321 |
-
|
| 1322 |
-
ml_output_text = ml_details if ml_details else "ML features disabled or models not available."
|
| 1323 |
-
|
| 1324 |
-
return result_text, resolved_text, temp_file if temp_file else None, ml_output_text
|
| 1325 |
-
|
| 1326 |
-
# Button to generate requirements from description
|
| 1327 |
-
def generate_and_update(project_desc, existing_reqs):
|
| 1328 |
-
"""Generate requirements and update the requirements input."""
|
| 1329 |
-
if not project_desc or not project_desc.strip():
|
| 1330 |
-
return "Please enter a project description first.", existing_reqs
|
| 1331 |
-
|
| 1332 |
-
generator = ProjectRequirementsGenerator(use_llm=True)
|
| 1333 |
-
requirements, explanations = generator.generate_requirements(project_desc)
|
| 1334 |
-
|
| 1335 |
-
# Check if we got valid requirements (rule-based should always return something)
|
| 1336 |
-
if requirements and requirements.strip() and len(requirements.strip()) > 5:
|
| 1337 |
-
# Create preview output
|
| 1338 |
-
preview = f"## Generated Requirements\n\n"
|
| 1339 |
-
preview += f"**Project:** {project_desc[:100]}{'...' if len(project_desc) > 100 else ''}\n\n"
|
| 1340 |
-
preview += "**Suggested Packages:**\n```\n"
|
| 1341 |
-
preview += requirements
|
| 1342 |
-
preview += "\n```\n\n"
|
| 1343 |
-
if explanations and explanations.strip():
|
| 1344 |
-
preview += "**Why these packages?**\n"
|
| 1345 |
-
preview += explanations
|
| 1346 |
-
preview += "\n\n*Requirements have been added to the 'Requirements.txt Content' box below. You can edit them before analysis.*"
|
| 1347 |
-
|
| 1348 |
-
# Update requirements input (append or replace)
|
| 1349 |
-
if existing_reqs and existing_reqs.strip():
|
| 1350 |
-
updated_reqs = requirements + "\n" + existing_reqs
|
| 1351 |
-
else:
|
| 1352 |
-
updated_reqs = requirements
|
| 1353 |
-
|
| 1354 |
-
return preview, updated_reqs
|
| 1355 |
-
else:
|
| 1356 |
-
# Fallback - generate basic requirements
|
| 1357 |
-
desc_lower = project_desc.lower()
|
| 1358 |
-
basic_reqs = []
|
| 1359 |
-
basic_explanations = []
|
| 1360 |
-
|
| 1361 |
-
if 'streamlit' in desc_lower or 'web' in desc_lower or 'app' in desc_lower:
|
| 1362 |
-
basic_reqs.append("streamlit>=1.28.0")
|
| 1363 |
-
basic_explanations.append("- streamlit: Build interactive web applications")
|
| 1364 |
-
|
| 1365 |
-
if 'pdf' in desc_lower or 'document' in desc_lower:
|
| 1366 |
-
basic_reqs.append("pypdf>=3.17.0")
|
| 1367 |
-
basic_explanations.append("- pypdf: PDF parsing and text extraction")
|
| 1368 |
-
|
| 1369 |
-
if 'rag' in desc_lower or 'chatbot' in desc_lower or 'llm' in desc_lower:
|
| 1370 |
-
basic_reqs.append("langchain>=0.1.0")
|
| 1371 |
-
basic_reqs.append("openai>=1.0.0")
|
| 1372 |
-
basic_explanations.append("- langchain: Framework for building LLM applications")
|
| 1373 |
-
basic_explanations.append("- openai: OpenAI API integration")
|
| 1374 |
-
|
| 1375 |
-
if basic_reqs:
|
| 1376 |
-
reqs_text = '\n'.join(basic_reqs)
|
| 1377 |
-
exp_text = '\n'.join(basic_explanations)
|
| 1378 |
-
preview = f"## Generated Requirements\n\n**Project:** {project_desc[:100]}\n\n**Suggested Packages:**\n```\n{reqs_text}\n```\n\n**Why these packages?**\n{exp_text}"
|
| 1379 |
-
if existing_reqs and existing_reqs.strip():
|
| 1380 |
-
updated_reqs = reqs_text + "\n" + existing_reqs
|
| 1381 |
-
else:
|
| 1382 |
-
updated_reqs = reqs_text
|
| 1383 |
-
return preview, updated_reqs
|
| 1384 |
-
|
| 1385 |
-
error_msg = "## Could not generate requirements\n\nPlease try a more detailed description with keywords like: web, API, data analysis, machine learning, PDF, chatbot, etc."
|
| 1386 |
-
return error_msg, existing_reqs
|
| 1387 |
-
|
| 1388 |
-
generate_requirements_btn.click(
|
| 1389 |
-
fn=generate_and_update,
|
| 1390 |
-
inputs=[project_description_input, requirements_input],
|
| 1391 |
-
outputs=[generated_requirements_display, requirements_input]
|
| 1392 |
-
)
|
| 1393 |
|
| 1394 |
process_btn.click(
|
| 1395 |
fn=process_and_download,
|
| 1396 |
-
inputs=[
|
| 1397 |
-
outputs=[output_display, resolved_output, download_btn
|
| 1398 |
)
|
| 1399 |
|
| 1400 |
gr.Markdown("""
|
| 1401 |
---
|
| 1402 |
### How to Use
|
| 1403 |
|
| 1404 |
-
1. **
|
| 1405 |
-
2. **
|
| 1406 |
-
3. **
|
| 1407 |
-
4. **
|
| 1408 |
-
5. **
|
| 1409 |
-
6. **
|
| 1410 |
-
7. **Click "Analyze & Resolve Dependencies"**
|
| 1411 |
-
8. **Review the results** including AI-generated requirements and explanations
|
| 1412 |
-
9. **Download the resolved requirements.txt**
|
| 1413 |
|
| 1414 |
### Features
|
| 1415 |
|
| 1416 |
-
-
|
| 1417 |
-
-
|
| 1418 |
-
-
|
| 1419 |
-
-
|
| 1420 |
-
-
|
| 1421 |
-
-
|
| 1422 |
-
- Environment-aware (Python version, platform, device)
|
| 1423 |
""")
|
| 1424 |
|
| 1425 |
return app
|
|
@@ -1430,3 +513,4 @@ if __name__ == "__main__":
|
|
| 1430 |
# For Hugging Face Spaces, use default launch settings
|
| 1431 |
# For local development, you can customize
|
| 1432 |
app.launch()
|
|
|
|
|
|
| 9 |
import subprocess
|
| 10 |
from pathlib import Path
|
| 11 |
from typing import List, Dict, Tuple, Optional, Set
|
|
|
|
|
|
|
| 12 |
from packaging.requirements import Requirement
|
| 13 |
from packaging.specifiers import SpecifierSet
|
| 14 |
from packaging.version import Version
|
| 15 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
class DependencyParser:
|
|
|
|
| 285 |
Path(temp_req_file).unlink(missing_ok=True)
|
| 286 |
|
| 287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
def process_dependencies(
|
|
|
|
| 289 |
library_list: str,
|
| 290 |
requirements_text: str,
|
| 291 |
uploaded_file,
|
|
|
|
| 293 |
device: str,
|
| 294 |
os_type: str,
|
| 295 |
mode: str,
|
| 296 |
+
resolution_strategy: str
|
| 297 |
+
) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
"""Main processing function for Gradio interface."""
|
| 299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
# Collect dependencies from all sources
|
| 301 |
all_dependencies = []
|
| 302 |
|
|
|
|
| 315 |
# Parse uploaded file
|
| 316 |
if uploaded_file:
|
| 317 |
try:
|
| 318 |
+
with open(uploaded_file, 'r') as f:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
content = f.read()
|
| 320 |
parser = DependencyParser()
|
| 321 |
deps = parser.parse_requirements_text(content)
|
| 322 |
all_dependencies.extend(deps)
|
| 323 |
except Exception as e:
|
| 324 |
+
return f"Error reading file: {str(e)}", ""
|
| 325 |
|
| 326 |
if not all_dependencies:
|
| 327 |
+
return "Please provide at least one input: library list, requirements text, or uploaded file.", ""
|
| 328 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
# Build dependency graph
|
| 330 |
resolver = DependencyResolver(python_version=python_version, platform=os_type, device=device)
|
| 331 |
deep_mode = (mode == "Deep (with transitive dependencies)")
|
|
|
|
| 334 |
# Check compatibility
|
| 335 |
is_compatible, issues = resolver.check_compatibility(graph)
|
| 336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
# Resolve dependencies
|
| 338 |
+
resolved_text, warnings = resolver.resolve_dependencies(all_dependencies, resolution_strategy)
|
|
|
|
| 339 |
|
| 340 |
# Build output message
|
| 341 |
output_parts = []
|
| 342 |
output_parts.append("## Dependency Analysis Results\n\n")
|
| 343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
if issues:
|
| 345 |
+
output_parts.append("### β οΈ Compatibility Issues Found:\n")
|
| 346 |
+
for issue in issues:
|
| 347 |
+
output_parts.append(f"- {issue}\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
output_parts.append("\n")
|
| 349 |
|
| 350 |
+
if warnings:
|
| 351 |
+
output_parts.append("### βΉοΈ Warnings:\n")
|
| 352 |
+
for warning in warnings:
|
| 353 |
output_parts.append(f"- {warning}\n")
|
| 354 |
output_parts.append("\n")
|
| 355 |
|
| 356 |
if is_compatible and not issues:
|
| 357 |
+
output_parts.append("### β
No compatibility issues detected!\n\n")
|
| 358 |
|
| 359 |
+
output_parts.append(f"### π¦ Resolved Requirements ({len(all_dependencies)} packages):\n")
|
| 360 |
output_parts.append("```\n")
|
| 361 |
output_parts.append(resolved_text)
|
| 362 |
output_parts.append("\n```\n")
|
| 363 |
|
| 364 |
+
return ''.join(output_parts), resolved_text
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
|
| 367 |
# Gradio Interface
|
| 368 |
def create_interface():
|
| 369 |
"""Create and return the Gradio interface."""
|
|
|
|
| 370 |
|
| 371 |
+
with gr.Blocks(title="Python Dependency Compatibility Board", theme=gr.themes.Soft()) as app:
|
| 372 |
gr.Markdown("""
|
| 373 |
+
# π Python Dependency Compatibility Board
|
| 374 |
|
| 375 |
+
Analyze and resolve Python package dependencies. Input your requirements in multiple ways:
|
| 376 |
+
- List library names (one per line)
|
| 377 |
+
- Paste requirements.txt content
|
| 378 |
+
- Upload a requirements.txt file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
+
The tool will check for compatibility issues and generate a resolved requirements.txt file.
|
| 381 |
""")
|
| 382 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
with gr.Row():
|
| 384 |
with gr.Column(scale=1):
|
| 385 |
gr.Markdown("### Input Methods")
|
|
|
|
| 441 |
info="How to resolve version conflicts"
|
| 442 |
)
|
| 443 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
process_btn = gr.Button("Analyze & Resolve Dependencies", variant="primary", size="lg")
|
| 445 |
|
| 446 |
with gr.Row():
|
|
|
|
| 450 |
)
|
| 451 |
|
| 452 |
with gr.Row():
|
| 453 |
+
with gr.Column():
|
| 454 |
resolved_output = gr.Textbox(
|
| 455 |
label="Resolved requirements.txt",
|
| 456 |
lines=15,
|
|
|
|
| 462 |
value=None,
|
| 463 |
visible=True
|
| 464 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
|
| 466 |
def process_and_download(*args):
|
| 467 |
+
result_text, resolved_text = process_dependencies(*args)
|
|
|
|
| 468 |
|
| 469 |
# Create a temporary file for download
|
| 470 |
temp_file = None
|
|
|
|
| 476 |
except Exception as e:
|
| 477 |
print(f"Error creating download file: {e}")
|
| 478 |
|
| 479 |
+
return result_text, resolved_text, temp_file if temp_file else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
|
| 481 |
process_btn.click(
|
| 482 |
fn=process_and_download,
|
| 483 |
+
inputs=[library_input, requirements_input, file_upload, python_version, device, os_type, mode, resolution_strategy],
|
| 484 |
+
outputs=[output_display, resolved_output, download_btn]
|
| 485 |
)
|
| 486 |
|
| 487 |
gr.Markdown("""
|
| 488 |
---
|
| 489 |
### How to Use
|
| 490 |
|
| 491 |
+
1. **Input your dependencies** using any of the three methods (or combine them)
|
| 492 |
+
2. **Configure your environment** (Python version, device, OS)
|
| 493 |
+
3. **Choose analysis mode**: Quick for fast results, Deep for complete dependency tree
|
| 494 |
+
4. **Select resolution strategy**: How to handle version conflicts
|
| 495 |
+
5. **Click "Analyze & Resolve Dependencies"**
|
| 496 |
+
6. **Review the results** and download the resolved requirements.txt
|
|
|
|
|
|
|
|
|
|
| 497 |
|
| 498 |
### Features
|
| 499 |
|
| 500 |
+
- β
Parse multiple input formats
|
| 501 |
+
- β
Detect version conflicts
|
| 502 |
+
- β
Check compatibility across dependency graph
|
| 503 |
+
- β
Resolve dependencies using pip
|
| 504 |
+
- β
Generate clean, pip-compatible requirements.txt
|
| 505 |
+
- β
Environment-aware (Python version, platform, device)
|
|
|
|
| 506 |
""")
|
| 507 |
|
| 508 |
return app
|
|
|
|
| 513 |
# For Hugging Face Spaces, use default launch settings
|
| 514 |
# For local development, you can customize
|
| 515 |
app.launch()
|
| 516 |
+
|
data/ground_truth/gt_1 copy.txt
DELETED
|
@@ -1,6 +0,0 @@
|
|
| 1 |
-
torch
|
| 2 |
-
torchvision
|
| 3 |
-
torchvision.transforms as transforms
|
| 4 |
-
torch.utils.data import DataLoader
|
| 5 |
-
numpy as np
|
| 6 |
-
scipy import stats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/ground_truth/gt_1.txt
DELETED
|
@@ -1,6 +0,0 @@
|
|
| 1 |
-
torch
|
| 2 |
-
torchvision
|
| 3 |
-
torchvision.transforms as transforms
|
| 4 |
-
torch.utils.data import DataLoader
|
| 5 |
-
numpy
|
| 6 |
-
scipy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/package_name_catalog.json
DELETED
|
@@ -1,47 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"valid_packages": [
|
| 3 |
-
"numpy",
|
| 4 |
-
"pandas",
|
| 5 |
-
"scipy",
|
| 6 |
-
"scikit-learn",
|
| 7 |
-
"pydantic",
|
| 8 |
-
"fastapi",
|
| 9 |
-
"torch",
|
| 10 |
-
"pytorch-lightning",
|
| 11 |
-
"tensorflow",
|
| 12 |
-
"keras",
|
| 13 |
-
"pillow",
|
| 14 |
-
"requests",
|
| 15 |
-
"httpx",
|
| 16 |
-
"langchain",
|
| 17 |
-
"openai",
|
| 18 |
-
"chromadb",
|
| 19 |
-
"uvicorn",
|
| 20 |
-
"starlette",
|
| 21 |
-
"sqlalchemy",
|
| 22 |
-
"alembic",
|
| 23 |
-
"redis"
|
| 24 |
-
],
|
| 25 |
-
"invalid_packages": [
|
| 26 |
-
"numpyy",
|
| 27 |
-
"pandaz",
|
| 28 |
-
"scipy-pro",
|
| 29 |
-
"fastapi-pro",
|
| 30 |
-
"torchx",
|
| 31 |
-
"pytorch-brightning",
|
| 32 |
-
"tensorflower",
|
| 33 |
-
"kerras",
|
| 34 |
-
"pillow2",
|
| 35 |
-
"requests3",
|
| 36 |
-
"httxx",
|
| 37 |
-
"langchainz",
|
| 38 |
-
"opena1",
|
| 39 |
-
"chromad",
|
| 40 |
-
"uvicornx",
|
| 41 |
-
"starlite",
|
| 42 |
-
"sqalachemy",
|
| 43 |
-
"alembico",
|
| 44 |
-
"redis-plus",
|
| 45 |
-
"fakerlib"
|
| 46 |
-
]
|
| 47 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ml_models.py
DELETED
|
@@ -1,295 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
ML Model Loader and Utilities
|
| 3 |
-
Handles loading and using the conflict prediction model and package embeddings.
|
| 4 |
-
Loads from local files if available, otherwise downloads from Hugging Face Hub.
|
| 5 |
-
"""
|
| 6 |
-
|
| 7 |
-
import json
|
| 8 |
-
import pickle
|
| 9 |
-
from pathlib import Path
|
| 10 |
-
from typing import Dict, List, Tuple, Optional
|
| 11 |
-
import numpy as np
|
| 12 |
-
from packaging.requirements import Requirement
|
| 13 |
-
|
| 14 |
-
# Try to import huggingface_hub for model downloading
|
| 15 |
-
try:
|
| 16 |
-
from huggingface_hub import hf_hub_download
|
| 17 |
-
HF_HUB_AVAILABLE = True
|
| 18 |
-
except ImportError:
|
| 19 |
-
HF_HUB_AVAILABLE = False
|
| 20 |
-
print("Warning: huggingface_hub not available. Models must be loaded locally.")
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
class ConflictPredictor:
|
| 24 |
-
"""Load and use the conflict prediction model."""
|
| 25 |
-
|
| 26 |
-
def __init__(self, model_path: Optional[Path] = None, repo_id: str = "ysakhale/dependency-conflict-models"):
|
| 27 |
-
"""Initialize the conflict predictor.
|
| 28 |
-
|
| 29 |
-
Args:
|
| 30 |
-
model_path: Local path to model file (optional)
|
| 31 |
-
repo_id: Hugging Face repository ID to download from if local file not found
|
| 32 |
-
"""
|
| 33 |
-
self.repo_id = repo_id
|
| 34 |
-
self.model = None
|
| 35 |
-
self.model_path = model_path
|
| 36 |
-
|
| 37 |
-
# Try local path first
|
| 38 |
-
if model_path is None:
|
| 39 |
-
model_path = Path(__file__).parent / "models" / "conflict_predictor.pkl"
|
| 40 |
-
|
| 41 |
-
self.model_path = model_path
|
| 42 |
-
|
| 43 |
-
# Try loading from local file
|
| 44 |
-
if model_path.exists():
|
| 45 |
-
try:
|
| 46 |
-
with open(model_path, 'rb') as f:
|
| 47 |
-
self.model = pickle.load(f)
|
| 48 |
-
print(f"Loaded conflict prediction model from {model_path}")
|
| 49 |
-
return
|
| 50 |
-
except Exception as e:
|
| 51 |
-
print(f"Could not load conflict prediction model from local: {e}")
|
| 52 |
-
|
| 53 |
-
# If local file doesn't exist, try downloading from HF Hub
|
| 54 |
-
if HF_HUB_AVAILABLE:
|
| 55 |
-
try:
|
| 56 |
-
print(f"Model not found locally. Downloading from Hugging Face Hub: {repo_id}")
|
| 57 |
-
downloaded_path = hf_hub_download(
|
| 58 |
-
repo_id=repo_id,
|
| 59 |
-
filename="conflict_predictor.pkl",
|
| 60 |
-
repo_type="model"
|
| 61 |
-
)
|
| 62 |
-
with open(downloaded_path, 'rb') as f:
|
| 63 |
-
self.model = pickle.load(f)
|
| 64 |
-
print(f"Loaded conflict prediction model from Hugging Face Hub")
|
| 65 |
-
# Optionally cache it locally
|
| 66 |
-
try:
|
| 67 |
-
model_path.parent.mkdir(parents=True, exist_ok=True)
|
| 68 |
-
import shutil
|
| 69 |
-
shutil.copy(downloaded_path, model_path)
|
| 70 |
-
print(f"Cached model locally at {model_path}")
|
| 71 |
-
except:
|
| 72 |
-
pass
|
| 73 |
-
return
|
| 74 |
-
except Exception as e:
|
| 75 |
-
print(f"Could not download model from Hugging Face Hub: {e}")
|
| 76 |
-
|
| 77 |
-
print(f"Warning: Conflict prediction model not available")
|
| 78 |
-
|
| 79 |
-
def extract_features(self, requirements_text: str) -> np.ndarray:
|
| 80 |
-
"""Extract features from requirements text (same as training)."""
|
| 81 |
-
features = []
|
| 82 |
-
|
| 83 |
-
packages = {}
|
| 84 |
-
lines = requirements_text.strip().split('\n')
|
| 85 |
-
num_packages = 0
|
| 86 |
-
has_pins = 0
|
| 87 |
-
version_specificity = []
|
| 88 |
-
|
| 89 |
-
for line in lines:
|
| 90 |
-
line = line.strip()
|
| 91 |
-
if not line or line.startswith('#'):
|
| 92 |
-
continue
|
| 93 |
-
|
| 94 |
-
try:
|
| 95 |
-
req = Requirement(line)
|
| 96 |
-
pkg_name = req.name.lower()
|
| 97 |
-
specifier = str(req.specifier) if req.specifier else ''
|
| 98 |
-
|
| 99 |
-
if pkg_name in packages:
|
| 100 |
-
features.append(1) # has_duplicate flag
|
| 101 |
-
else:
|
| 102 |
-
packages[pkg_name] = specifier
|
| 103 |
-
num_packages += 1
|
| 104 |
-
|
| 105 |
-
if specifier:
|
| 106 |
-
has_pins += 1
|
| 107 |
-
if '==' in specifier:
|
| 108 |
-
version_specificity.append(3)
|
| 109 |
-
elif '>=' in specifier or '<=' in specifier:
|
| 110 |
-
version_specificity.append(2)
|
| 111 |
-
else:
|
| 112 |
-
version_specificity.append(1)
|
| 113 |
-
else:
|
| 114 |
-
version_specificity.append(0)
|
| 115 |
-
except:
|
| 116 |
-
pass
|
| 117 |
-
|
| 118 |
-
feature_vec = []
|
| 119 |
-
feature_vec.append(min(num_packages / 20.0, 1.0))
|
| 120 |
-
feature_vec.append(has_pins / max(num_packages, 1))
|
| 121 |
-
feature_vec.append(np.mean(version_specificity) / 3.0 if version_specificity else 0)
|
| 122 |
-
feature_vec.append(1 if len(packages) < num_packages else 0)
|
| 123 |
-
|
| 124 |
-
common_packages = [
|
| 125 |
-
'torch', 'pytorch-lightning', 'tensorflow', 'keras', 'fastapi', 'pydantic',
|
| 126 |
-
'numpy', 'pandas', 'scipy', 'scikit-learn', 'matplotlib', 'seaborn',
|
| 127 |
-
'requests', 'httpx', 'sqlalchemy', 'alembic', 'uvicorn', 'starlette',
|
| 128 |
-
'langchain', 'openai', 'chromadb', 'redis', 'celery', 'gunicorn',
|
| 129 |
-
'pillow', 'opencv-python', 'beautifulsoup4', 'scrapy', 'plotly', 'jax'
|
| 130 |
-
]
|
| 131 |
-
|
| 132 |
-
for pkg in common_packages:
|
| 133 |
-
feature_vec.append(1 if pkg in packages else 0)
|
| 134 |
-
|
| 135 |
-
has_torch = 'torch' in packages
|
| 136 |
-
has_pl = 'pytorch-lightning' in packages
|
| 137 |
-
has_tf = 'tensorflow' in packages
|
| 138 |
-
has_keras = 'keras' in packages
|
| 139 |
-
has_fastapi = 'fastapi' in packages
|
| 140 |
-
has_pydantic = 'pydantic' in packages
|
| 141 |
-
|
| 142 |
-
feature_vec.append(1 if (has_torch and has_pl) else 0)
|
| 143 |
-
feature_vec.append(1 if (has_tf and has_keras) else 0)
|
| 144 |
-
feature_vec.append(1 if (has_fastapi and has_pydantic) else 0)
|
| 145 |
-
|
| 146 |
-
return np.array(feature_vec)
|
| 147 |
-
|
| 148 |
-
def predict(self, requirements_text: str) -> Tuple[bool, float]:
|
| 149 |
-
"""
|
| 150 |
-
Predict if requirements have conflicts.
|
| 151 |
-
|
| 152 |
-
Returns:
|
| 153 |
-
(has_conflict, confidence_score)
|
| 154 |
-
"""
|
| 155 |
-
if self.model is None:
|
| 156 |
-
return False, 0.0
|
| 157 |
-
|
| 158 |
-
try:
|
| 159 |
-
features = self.extract_features(requirements_text)
|
| 160 |
-
features = features.reshape(1, -1)
|
| 161 |
-
|
| 162 |
-
prediction = self.model.predict(features)[0]
|
| 163 |
-
probability = self.model.predict_proba(features)[0]
|
| 164 |
-
|
| 165 |
-
has_conflict = bool(prediction)
|
| 166 |
-
confidence = float(probability[1] if has_conflict else probability[0])
|
| 167 |
-
|
| 168 |
-
return has_conflict, confidence
|
| 169 |
-
except Exception as e:
|
| 170 |
-
print(f"Error in conflict prediction: {e}")
|
| 171 |
-
return False, 0.0
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
class PackageEmbeddings:
|
| 175 |
-
"""Load and use package embeddings for similarity matching."""
|
| 176 |
-
|
| 177 |
-
def __init__(self, embeddings_path: Optional[Path] = None, repo_id: str = "ysakhale/dependency-conflict-models"):
|
| 178 |
-
"""Initialize package embeddings.
|
| 179 |
-
|
| 180 |
-
Args:
|
| 181 |
-
embeddings_path: Local path to embeddings file (optional)
|
| 182 |
-
repo_id: Hugging Face repository ID to download from if local file not found
|
| 183 |
-
"""
|
| 184 |
-
self.repo_id = repo_id
|
| 185 |
-
self.embeddings = {}
|
| 186 |
-
self.embeddings_path = embeddings_path
|
| 187 |
-
self.model = None
|
| 188 |
-
|
| 189 |
-
if embeddings_path is None:
|
| 190 |
-
embeddings_path = Path(__file__).parent / "models" / "package_embeddings.json"
|
| 191 |
-
|
| 192 |
-
self.embeddings_path = embeddings_path
|
| 193 |
-
|
| 194 |
-
# Try loading from local file
|
| 195 |
-
if embeddings_path.exists():
|
| 196 |
-
try:
|
| 197 |
-
with open(embeddings_path, 'r') as f:
|
| 198 |
-
self.embeddings = json.load(f)
|
| 199 |
-
print(f"Loaded {len(self.embeddings)} package embeddings from {embeddings_path}")
|
| 200 |
-
return
|
| 201 |
-
except Exception as e:
|
| 202 |
-
print(f"Could not load embeddings from local: {e}")
|
| 203 |
-
|
| 204 |
-
# If local file doesn't exist, try downloading from HF Hub
|
| 205 |
-
if HF_HUB_AVAILABLE:
|
| 206 |
-
try:
|
| 207 |
-
print(f"Embeddings not found locally. Downloading from Hugging Face Hub: {repo_id}")
|
| 208 |
-
downloaded_path = hf_hub_download(
|
| 209 |
-
repo_id=repo_id,
|
| 210 |
-
filename="package_embeddings.json",
|
| 211 |
-
repo_type="model"
|
| 212 |
-
)
|
| 213 |
-
with open(downloaded_path, 'r') as f:
|
| 214 |
-
self.embeddings = json.load(f)
|
| 215 |
-
print(f"Loaded {len(self.embeddings)} package embeddings from Hugging Face Hub")
|
| 216 |
-
# Optionally cache it locally
|
| 217 |
-
try:
|
| 218 |
-
embeddings_path.parent.mkdir(parents=True, exist_ok=True)
|
| 219 |
-
import shutil
|
| 220 |
-
shutil.copy(downloaded_path, embeddings_path)
|
| 221 |
-
print(f"Cached embeddings locally at {embeddings_path}")
|
| 222 |
-
except:
|
| 223 |
-
pass
|
| 224 |
-
return
|
| 225 |
-
except Exception as e:
|
| 226 |
-
print(f"Could not download embeddings from Hugging Face Hub: {e}")
|
| 227 |
-
|
| 228 |
-
print(f"Warning: Package embeddings not available")
|
| 229 |
-
|
| 230 |
-
def _load_model(self):
|
| 231 |
-
"""Lazy load the sentence transformer model."""
|
| 232 |
-
if self.model is None:
|
| 233 |
-
try:
|
| 234 |
-
from sentence_transformers import SentenceTransformer
|
| 235 |
-
self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 236 |
-
except ImportError:
|
| 237 |
-
print("β οΈ sentence-transformers not available, embedding similarity disabled")
|
| 238 |
-
return None
|
| 239 |
-
return self.model
|
| 240 |
-
|
| 241 |
-
def get_embedding(self, package_name: str) -> Optional[np.ndarray]:
|
| 242 |
-
"""Get embedding for a package (from cache or compute on-the-fly)."""
|
| 243 |
-
package_lower = package_name.lower()
|
| 244 |
-
|
| 245 |
-
# Check cache first
|
| 246 |
-
if package_lower in self.embeddings:
|
| 247 |
-
return np.array(self.embeddings[package_lower])
|
| 248 |
-
|
| 249 |
-
# Compute on-the-fly if model available
|
| 250 |
-
model = self._load_model()
|
| 251 |
-
if model is not None:
|
| 252 |
-
embedding = model.encode([package_name])[0]
|
| 253 |
-
# Cache it
|
| 254 |
-
self.embeddings[package_lower] = embedding.tolist()
|
| 255 |
-
return embedding
|
| 256 |
-
|
| 257 |
-
return None
|
| 258 |
-
|
| 259 |
-
def find_similar(self, package_name: str, top_k: int = 5, threshold: float = 0.6) -> List[Tuple[str, float]]:
|
| 260 |
-
"""
|
| 261 |
-
Find similar packages using cosine similarity.
|
| 262 |
-
|
| 263 |
-
Returns:
|
| 264 |
-
List of (package_name, similarity_score) tuples
|
| 265 |
-
"""
|
| 266 |
-
query_emb = self.get_embedding(package_name)
|
| 267 |
-
if query_emb is None:
|
| 268 |
-
return []
|
| 269 |
-
|
| 270 |
-
similarities = []
|
| 271 |
-
|
| 272 |
-
for pkg, emb in self.embeddings.items():
|
| 273 |
-
if pkg == package_name.lower():
|
| 274 |
-
continue
|
| 275 |
-
|
| 276 |
-
emb_array = np.array(emb)
|
| 277 |
-
# Cosine similarity
|
| 278 |
-
similarity = np.dot(query_emb, emb_array) / (
|
| 279 |
-
np.linalg.norm(query_emb) * np.linalg.norm(emb_array)
|
| 280 |
-
)
|
| 281 |
-
|
| 282 |
-
if similarity >= threshold:
|
| 283 |
-
similarities.append((pkg, float(similarity)))
|
| 284 |
-
|
| 285 |
-
# Sort by similarity and return top_k
|
| 286 |
-
similarities.sort(key=lambda x: x[1], reverse=True)
|
| 287 |
-
return similarities[:top_k]
|
| 288 |
-
|
| 289 |
-
def get_best_match(self, package_name: str, threshold: float = 0.7) -> Optional[str]:
|
| 290 |
-
"""Get the best matching package name."""
|
| 291 |
-
similar = self.find_similar(package_name, top_k=1, threshold=threshold)
|
| 292 |
-
if similar:
|
| 293 |
-
return similar[0][0]
|
| 294 |
-
return None
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,9 +1,4 @@
|
|
| 1 |
-
gradio
|
| 2 |
-
packaging>=23.0
|
| 3 |
-
pip>=23.0
|
| 4 |
-
|
| 5 |
-
scikit-learn>=1.3.0
|
| 6 |
-
sentence-transformers>=2.2.0
|
| 7 |
-
numpy>=1.24.0
|
| 8 |
-
huggingface-hub>=0.20.0
|
| 9 |
-
|
|
|
|
| 1 |
+
gradio==4.44.1
|
| 2 |
+
packaging>=23.0
|
| 3 |
+
pip>=23.0
|
| 4 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
upload_models_to_hf.py
DELETED
|
@@ -1,86 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Upload ML models to Hugging Face Hub
|
| 3 |
-
This allows the models to be loaded in Hugging Face Spaces
|
| 4 |
-
"""
|
| 5 |
-
|
| 6 |
-
from pathlib import Path
|
| 7 |
-
from huggingface_hub import HfApi, login
|
| 8 |
-
import os
|
| 9 |
-
|
| 10 |
-
def upload_models():
|
| 11 |
-
"""Upload models to Hugging Face Hub."""
|
| 12 |
-
|
| 13 |
-
# Check if models exist
|
| 14 |
-
models_dir = Path("models")
|
| 15 |
-
if not models_dir.exists():
|
| 16 |
-
print("Error: models/ directory not found!")
|
| 17 |
-
print("Please train the models first:")
|
| 18 |
-
print(" python train_conflict_model.py")
|
| 19 |
-
print(" python generate_embeddings.py")
|
| 20 |
-
return
|
| 21 |
-
|
| 22 |
-
# Check for model files
|
| 23 |
-
model_files = {
|
| 24 |
-
"conflict_predictor.pkl": models_dir / "conflict_predictor.pkl",
|
| 25 |
-
"package_embeddings.json": models_dir / "package_embeddings.json",
|
| 26 |
-
"embedding_info.json": models_dir / "embedding_info.json"
|
| 27 |
-
}
|
| 28 |
-
|
| 29 |
-
missing = [name for name, path in model_files.items() if not path.exists()]
|
| 30 |
-
if missing:
|
| 31 |
-
print(f"Error: Missing model files: {missing}")
|
| 32 |
-
print("Please train the models first:")
|
| 33 |
-
print(" python train_conflict_model.py")
|
| 34 |
-
print(" python generate_embeddings.py")
|
| 35 |
-
return
|
| 36 |
-
|
| 37 |
-
# Login to Hugging Face
|
| 38 |
-
print("Logging in to Hugging Face...")
|
| 39 |
-
print("(You'll need to enter your HF token - get it from https://huggingface.co/settings/tokens)")
|
| 40 |
-
try:
|
| 41 |
-
login()
|
| 42 |
-
except Exception as e:
|
| 43 |
-
print(f"Login error: {e}")
|
| 44 |
-
print("\nYou can also set HF_TOKEN environment variable:")
|
| 45 |
-
print(" $env:HF_TOKEN='your_token_here' # PowerShell")
|
| 46 |
-
return
|
| 47 |
-
|
| 48 |
-
# Initialize API
|
| 49 |
-
api = HfApi()
|
| 50 |
-
|
| 51 |
-
# Repository name for models
|
| 52 |
-
repo_id = "ysakhale/dependency-conflict-models"
|
| 53 |
-
|
| 54 |
-
# Create repository if it doesn't exist
|
| 55 |
-
try:
|
| 56 |
-
api.create_repo(
|
| 57 |
-
repo_id=repo_id,
|
| 58 |
-
repo_type="model",
|
| 59 |
-
exist_ok=True,
|
| 60 |
-
private=False
|
| 61 |
-
)
|
| 62 |
-
print(f"Repository {repo_id} is ready!")
|
| 63 |
-
except Exception as e:
|
| 64 |
-
print(f"Note: {e}")
|
| 65 |
-
|
| 66 |
-
# Upload each model file
|
| 67 |
-
print("\nUploading models...")
|
| 68 |
-
for filename, filepath in model_files.items():
|
| 69 |
-
print(f"Uploading {filename}...")
|
| 70 |
-
try:
|
| 71 |
-
api.upload_file(
|
| 72 |
-
path_or_fileobj=str(filepath),
|
| 73 |
-
path_in_repo=filename,
|
| 74 |
-
repo_id=repo_id,
|
| 75 |
-
repo_type="model"
|
| 76 |
-
)
|
| 77 |
-
print(f" β {filename} uploaded successfully!")
|
| 78 |
-
except Exception as e:
|
| 79 |
-
print(f" β Error uploading {filename}: {e}")
|
| 80 |
-
|
| 81 |
-
print(f"\nβ
Models uploaded to: https://huggingface.co/{repo_id}")
|
| 82 |
-
print("\nNext step: Update ml_models.py to load from this repository")
|
| 83 |
-
|
| 84 |
-
if __name__ == "__main__":
|
| 85 |
-
upload_models()
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|