Spaces:
Runtime error
Runtime error
import argparse | |
import functools | |
import pathlib | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import torch | |
import anime_face_detector | |
def detect( | |
img, | |
face_score_threshold: float, | |
landmark_score_threshold: float, | |
detector: anime_face_detector.LandmarkDetector, | |
) -> PIL.Image.Image: | |
if not img: | |
return None | |
image = cv2.imread(img) | |
preds = detector(image) | |
res = image.copy() | |
for pred in preds: | |
box = pred["bbox"] | |
box, score = box[:4], box[4] | |
if score < face_score_threshold: | |
continue | |
box = np.round(box).astype(int) | |
lt = max(2, int(3 * (box[2:] - box[:2]).max() / 256)) | |
cv2.rectangle(res, tuple(box[:2]), tuple(box[2:]), (0, 255, 0), lt) | |
pred_pts = pred["keypoints"] | |
for *pt, score in pred_pts: | |
if score < landmark_score_threshold: | |
color = (0, 255, 255) | |
else: | |
color = (0, 0, 255) | |
pt = np.round(pt).astype(int) | |
cv2.circle(res, tuple(pt), lt, color, cv2.FILLED) | |
res = cv2.cvtColor(res, cv2.COLOR_BGR2RGB) | |
image_pil = PIL.Image.fromarray(res) | |
return image_pil | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--detector", type=str, default="yolov3", choices=["yolov3", "faster-rcnn"] | |
) | |
parser.add_argument( | |
"--device", type=str, default="cuda:0", choices=["cuda:0", "cpu"] | |
) | |
parser.add_argument("--face-score-threshold", type=float, default=0.5) | |
parser.add_argument("--landmark-score-threshold", type=float, default=0.3) | |
parser.add_argument("--score-slider-step", type=float, default=0.05) | |
parser.add_argument("--port", type=int) | |
parser.add_argument("--debug", action="store_true") | |
parser.add_argument("--share", action="store_true") | |
parser.add_argument("--live", action="store_true") | |
args = parser.parse_args() | |
sample_path = pathlib.Path("assets/input.jpg") | |
if not sample_path.exists(): | |
torch.hub.download_url_to_file( | |
"https://raw.githubusercontent.com/edisonlee55/hysts-anime-face-detector/main/assets/input.jpg", | |
sample_path.as_posix(), | |
) | |
detector = anime_face_detector.create_detector(args.detector, device=args.device) | |
func = functools.partial(detect, detector=detector) | |
title = "edisonlee55/hysts-anime-face-detector" | |
description = "Demo for edisonlee55/hysts-anime-face-detector. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
article = "<a href='https://github.com/edisonlee55/hysts-anime-face-detector'>GitHub Repo</a>" | |
gr.Interface( | |
func, | |
[ | |
gr.Image(type="filepath", label="Input"), | |
gr.Slider( | |
0, | |
1, | |
step=args.score_slider_step, | |
value=args.face_score_threshold, | |
label="Face Score Threshold", | |
), | |
gr.Slider( | |
0, | |
1, | |
step=args.score_slider_step, | |
value=args.landmark_score_threshold, | |
label="Landmark Score Threshold", | |
), | |
], | |
gr.Image(type="pil", label="Output"), | |
title=title, | |
description=description, | |
article=article, | |
examples=[ | |
[ | |
sample_path.as_posix(), | |
args.face_score_threshold, | |
args.landmark_score_threshold, | |
], | |
], | |
live=args.live, | |
).launch( | |
debug=args.debug, share=args.share, server_port=args.port, enable_queue=True | |
) | |
if __name__ == "__main__": | |
main() | |