|
import streamlit as st
|
|
|
|
|
|
from predict_trial import return_data
|
|
|
|
@st.cache_resource
|
|
def fetch_transformed_data():
|
|
with st.spinner("Started training the model...",show_time=True):
|
|
data_path, matrix_path = return_data().predict()
|
|
return data_path,matrix_path
|
|
st.success("Deployment complete, Successfully created the system!")
|
|
|
|
|
|
|
|
from recommendationSystem.utils.common import recommend,find_anime
|
|
|
|
@st.cache_resource
|
|
def anime_info(anime_name,anime_data,similarity_matrix):
|
|
if anime_name is not None:
|
|
st.write('\n\n\n')
|
|
|
|
name, posters, link, score = recommend(data=anime_data,matrix=similarity_matrix,anime=anime_name)
|
|
|
|
_, col, _ = st.columns(3)
|
|
|
|
with col:
|
|
st.image(posters[0])
|
|
|
|
st.text(f"{find_anime(anime_name)}")
|
|
st.write(f'Similarity Score : {score[0]}')
|
|
st.write('')
|
|
st.link_button("Know More", link[0],use_container_width=True)
|
|
|
|
for i in range(1,9,3):
|
|
col1, col2, col3 = st.columns(3)
|
|
|
|
with col1:
|
|
st.image(posters[i])
|
|
st.write(name[i])
|
|
st.write(f'Similarity Score : {score[i]}')
|
|
st.write('')
|
|
st.link_button("Know More", link[i],use_container_width=True)
|
|
|
|
with col2:
|
|
st.image(posters[i+1])
|
|
st.write(name[i+1])
|
|
st.write(f'Similarity Score : {score[i+1]}')
|
|
st.write('')
|
|
st.link_button("Know More", link[i+1],use_container_width=True)
|
|
|
|
with col3:
|
|
st.image(posters[i+2])
|
|
st.write(name[i+2])
|
|
st.write(f'Similarity Score : {score[i+2]}')
|
|
st.write('')
|
|
st.link_button("Know More", link[i+2],use_container_width=True)
|
|
|
|
st.write('\n\n\n')
|
|
|
|
|
|
|