SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-large-en-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'b260iunvhp000i 768386242246 20 30 where number of lamps is 1 linear fluorescent ballasts and by wattage x 75w 99w bulbscom universal electronic ballast 120v to 277v for 2 f96t12 universal brand b260iunvhp000i toolsandhomeimprovement',
'b260iunvhp000i 768386242246 10 50 where length is 10 under 18 bulbscom electronic t12 linear fluorescent ballasts universal electronic ballast 120v to 277v for 2 f96t12 universal brand b260iunvhp000i toolsandhomeimprovement',
'danze 24 double towel bar danze products at efaucetscom towel bars bathroom accessories danze 24 double towel bar parma collection solid brass construction easy to install mounting hardware included matching faucet collection d446612bn toolsandhomeimprovement',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 281,362 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 17 tokens
- mean: 81.45 tokens
- max: 1180 tokens
- min: 16 tokens
- mean: 86.66 tokens
- max: 1180 tokens
- Samples:
anchor positive clever lever extra giga punch scallop circle 35 inches clever wholesale darice this clever lever extra giga punch produces a clearcut scallop circle the craft punch is ideal for embellishing scrapbooks greeting cards invitations programs and many more paper crafts the scalloped circle is 35 inches in size 1 craft punch per package lvxgcp65 officeproducts
clever lever extra giga punch scallop circle 35 inches clever wholesale darice this clever lever extra giga punch produces a clearcut scallop circle the craft punch is ideal for embellishing scrapbooks greeting cards invitations programs and many more paper crafts the scalloped circle is 35 inches in size 1 craft punch per package lvxgcp65 officeproducts
strut front right shocks springs page 1 2002 bmw 325i base sedan suspension genuine bmw 31312282460boe automotive
strut front right shocks springs page 1 2002 bmw 325i base sedan suspension note only for cars with sport suspension and m sport package sachs 31312282460m10 automotive
herrold 40 drawer chest in dark walnutmango wood 792977257388 arreton 46quote in washed white oakantique brass sale home lighting fixtures lamps more online symbolizing achievement and rank the shield shape of this six drawer chest bears both historical and design significance built with craftsmens detail from dark walnutstained mango wood and mahogany veneers chest features curved sides smooth uttermost 25738upc792977257388 toolsandhomeimprovement
herrold 40 drawer chest in dark walnutmango wood 792977257388 malthus 31quote in aged parchmentreclaimed mahogany sale home lighting fixtures lamps more online symbolizing achievement and rank the shield shape of this six drawer chest bears both historical and design significance built with craftsmens detail from dark walnutstained mango wood and mahogany veneers chest features curved sides smooth uttermost 25738upc792977257388 toolsandhomeimprovement
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 70,341 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 18 tokens
- mean: 86.53 tokens
- max: 1175 tokens
- min: 17 tokens
- mean: 86.39 tokens
- max: 1176 tokens
- Samples:
anchor positive retro 70s furniture set armchairs chairs and vector image furniture images over 41 000 retro 70s furniture set armchairs chairs and sofas vector illustration eps 8 vector image 14149273 officeproducts
retro 70s furniture set armchairs chairs and vector image setting images over 12 million retro 70s furniture set armchairs chairs and sofas vector illustration eps 8 vector image 14149273 officeproducts
hp designjet 70 cartridges for ink jet printers quillcom ink volume 130 mlthis cartridge is not compatible with hp designjet t620 24in photo printer hp photosmart pro b9180 printer hp photosmart pro b8850 photo printer hp photosmart pro b8800 photo printerfaderesistant color provides superior results and brilliant truetolife images that last for generations 901680441 officeproducts
hp designjet z2100 44 in cartridges for ink jet printers quillcom ink volume 130 mlthis cartridge is not compatible with hp designjet t620 24in photo printer hp photosmart pro b9180 printer hp photosmart pro b8850 photo printer hp photosmart pro b8800 photo printerfaderesistant color provides superior results and brilliant truetolife images that last for generations 901680441 officeproducts
suspension strut assembly shocks springs page 1 1996 bmw 318i base convertible suspension note front left w sport suspension front left bilstein touring class 22172518int automotive
suspension strut assembly shocks springs page 1 1997 bmw 318is base coupe suspension note front left w sport suspension front left bilstein touring class 22172518int automotive
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepslearning_rate
: 1e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: Trueauto_find_batch_size
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Truefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.1990 | 7000 | 0.0076 | 0.0027 |
0.3981 | 14000 | 0.0022 | 0.0019 |
0.5971 | 21000 | 0.0016 | 0.0013 |
0.7961 | 28000 | 0.0013 | 0.0011 |
0.9951 | 35000 | 0.0012 | 0.0008 |
1.1942 | 42000 | 0.0007 | 0.0007 |
1.3932 | 49000 | 0.0004 | 0.0009 |
1.5922 | 56000 | 0.0004 | 0.0007 |
1.7912 | 63000 | 0.0003 | 0.0006 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.44.1
- PyTorch: 2.2.1
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for spl4shedEdu/gte_ISM
Base model
Alibaba-NLP/gte-large-en-v1.5