easycall-whisper-lg-3-Nov3
This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0614
- Wer: 8.1563
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.4391 | 0.0946 | 100 | 0.2666 | 33.1351 |
0.1608 | 0.1892 | 200 | 0.1262 | 17.0773 |
0.1116 | 0.2838 | 300 | 0.0969 | 12.4894 |
0.119 | 0.3784 | 400 | 0.1043 | 13.5939 |
0.0981 | 0.4730 | 500 | 0.0961 | 12.3619 |
0.0943 | 0.5676 | 600 | 0.0968 | 11.6822 |
0.087 | 0.6623 | 700 | 0.0886 | 11.5548 |
0.086 | 0.7569 | 800 | 0.0681 | 8.7935 |
0.0706 | 0.8515 | 900 | 0.0718 | 9.2608 |
0.067 | 0.9461 | 1000 | 0.0695 | 8.7935 |
0.0571 | 1.0407 | 1100 | 0.0682 | 8.3263 |
0.0596 | 1.1353 | 1200 | 0.0683 | 9.3883 |
0.0445 | 1.2299 | 1300 | 0.0677 | 8.0289 |
0.0577 | 1.3245 | 1400 | 0.0665 | 9.4308 |
0.0544 | 1.4191 | 1500 | 0.0633 | 8.5387 |
0.0491 | 1.5137 | 1600 | 0.0671 | 9.6856 |
0.0536 | 1.6083 | 1700 | 0.0617 | 8.6661 |
0.0406 | 1.7029 | 1800 | 0.0823 | 9.0059 |
0.0543 | 1.7975 | 1900 | 0.0614 | 8.1563 |
Framework versions
- Transformers 4.43.4
- Pytorch 2.4.1
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 12
Model tree for sqrk/easycall-whisper-lg-3-Nov3
Base model
openai/whisper-large-v3