YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Facial Emotion Recognition – SimpleCNN

A lightweight convolutional neural network (CNN) for facial emotion recognition.
The model is trained to classify grayscale facial images into 7 emotion categories.

Model Details

  • Model type: SimpleCNN (custom lightweight CNN)
  • Framework: PyTorch
  • Task: Image Classification
  • Input shape: 1 Γ— 48 Γ— 48 (grayscale image)
  • Number of classes: 7
  • Classes:
    • 0 β†’ Angry
    • 1 β†’ Disgust
    • 2 β†’ Fear
    • 3 β†’ Happy
    • 4 β†’ Sad
    • 5 β†’ Surprise
    • 6 β†’ Neutral

Intended Uses & Limitations

  • βœ… Educational projects, demos, prototypes.
  • ❌ Not suitable for medical, psychological, or safety-critical applications.
  • ❌ May not generalize well outside datasets like FER2013.

How to Use

from huggingface_hub import hf_hub_download
import torch
import json

from facial_emotion import SimpleCNN  # your model class

# Load config
config = json.load(open("config.json"))

# Build model
model = SimpleCNN(num_classes=config["num_classes"], in_channels=config["in_channels"])

# Load weights
checkpoint = hf_hub_download(repo_id="sreenathsree1578/facial_emotion", filename="pytorch_model.bin")
model.load_state_dict(torch.load(checkpoint, map_location="cpu"))
model.eval()

# Example inference
dummy = torch.randn(1, 1, 48, 48)  # dummy grayscale image
with torch.no_grad():
    out = model(dummy)
    pred = torch.argmax(out, dim=1).item()
    print("Predicted emotion:", config["labels"][str(pred)])
Downloads last month
93
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support