SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_2")
# Run inference
sentences = [
'How do you make a paper boat?',
'How do you make a paper airplane?',
'What are the benefits of using solar energy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9478 |
| cosine_accuracy_threshold | 0.6633 |
| cosine_f1 | 0.9559 |
| cosine_f1_threshold | 0.6633 |
| cosine_precision | 0.9155 |
| cosine_recall | 1.0 |
| cosine_ap | 0.9777 |
| dot_accuracy | 0.9478 |
| dot_accuracy_threshold | 0.6633 |
| dot_f1 | 0.9559 |
| dot_f1_threshold | 0.6633 |
| dot_precision | 0.9155 |
| dot_recall | 1.0 |
| dot_ap | 0.9777 |
| manhattan_accuracy | 0.9391 |
| manhattan_accuracy_threshold | 9.6031 |
| manhattan_f1 | 0.9489 |
| manhattan_f1_threshold | 12.6607 |
| manhattan_precision | 0.9028 |
| manhattan_recall | 1.0 |
| manhattan_ap | 0.9756 |
| euclidean_accuracy | 0.9478 |
| euclidean_accuracy_threshold | 0.8205 |
| euclidean_f1 | 0.9559 |
| euclidean_f1_threshold | 0.8205 |
| euclidean_precision | 0.9155 |
| euclidean_recall | 1.0 |
| euclidean_ap | 0.9777 |
| max_accuracy | 0.9478 |
| max_accuracy_threshold | 9.6031 |
| max_f1 | 0.9559 |
| max_f1_threshold | 12.6607 |
| max_precision | 0.9155 |
| max_recall | 1.0 |
| max_ap | 0.9777 |
Binary Classification
- Dataset:
pair-class-test - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9478 |
| cosine_accuracy_threshold | 0.7873 |
| cosine_f1 | 0.9559 |
| cosine_f1_threshold | 0.6543 |
| cosine_precision | 0.9155 |
| cosine_recall | 1.0 |
| cosine_ap | 0.9777 |
| dot_accuracy | 0.9478 |
| dot_accuracy_threshold | 0.7873 |
| dot_f1 | 0.9559 |
| dot_f1_threshold | 0.6543 |
| dot_precision | 0.9155 |
| dot_recall | 1.0 |
| dot_ap | 0.9777 |
| manhattan_accuracy | 0.9478 |
| manhattan_accuracy_threshold | 11.1232 |
| manhattan_f1 | 0.9559 |
| manhattan_f1_threshold | 12.8623 |
| manhattan_precision | 0.9155 |
| manhattan_recall | 1.0 |
| manhattan_ap | 0.9774 |
| euclidean_accuracy | 0.9478 |
| euclidean_accuracy_threshold | 0.6522 |
| euclidean_f1 | 0.9559 |
| euclidean_f1_threshold | 0.8315 |
| euclidean_precision | 0.9155 |
| euclidean_recall | 1.0 |
| euclidean_ap | 0.9777 |
| max_accuracy | 0.9478 |
| max_accuracy_threshold | 11.1232 |
| max_f1 | 0.9559 |
| max_f1_threshold | 12.8623 |
| max_precision | 0.9155 |
| max_recall | 1.0 |
| max_ap | 0.9777 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,030 training samples
- Columns:
label,sentence2, andsentence1 - Approximate statistics based on the first 1000 samples:
label sentence2 sentence1 type int string string details - 0: ~49.60%
- 1: ~50.40%
- min: 4 tokens
- mean: 10.27 tokens
- max: 22 tokens
- min: 6 tokens
- mean: 10.9 tokens
- max: 22 tokens
- Samples:
label sentence2 sentence1 1Speed of sound in airWhat is the speed of sound?1World's most popular tourist destinationWhat is the most visited tourist attraction in the world?1How do I write a resume?How do I create a resume? - Loss:
ContrastiveLosswith these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.6, "size_average": true }
Evaluation Dataset
Unnamed Dataset
- Size: 115 evaluation samples
- Columns:
label,sentence2, andsentence1 - Approximate statistics based on the first 1000 samples:
label sentence2 sentence1 type int string string details - 0: ~43.48%
- 1: ~56.52%
- min: 5 tokens
- mean: 10.04 tokens
- max: 15 tokens
- min: 6 tokens
- mean: 10.81 tokens
- max: 20 tokens
- Samples:
label sentence2 sentence1 0What methods are used to measure a nation's GDP?How is the GDP of a country measured?0What is the currency of Japan?What is the currency of China?1Steps to cultivate tomatoes at homeHow to grow tomatoes in a garden? - Loss:
ContrastiveLosswith these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.6, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 32per_device_eval_batch_size: 32gradient_accumulation_steps: 2weight_decay: 0.01num_train_epochs: 8lr_scheduler_type: reduce_lr_on_plateauwarmup_ratio: 0.1load_best_model_at_end: Trueoptim: adamw_torch_fusedbatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 8max_steps: -1lr_scheduler_type: reduce_lr_on_plateaulr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.7625 | - |
| 0.6061 | 10 | 0.0417 | - | - | - |
| 0.9697 | 16 | - | 0.0119 | 0.9695 | - |
| 1.2121 | 20 | 0.0189 | - | - | - |
| 1.8182 | 30 | 0.0148 | - | - | - |
| 2.0 | 33 | - | 0.0102 | 0.9741 | - |
| 2.4242 | 40 | 0.0114 | - | - | - |
| 2.9697 | 49 | - | 0.0098 | 0.9752 | - |
| 3.0303 | 50 | 0.009 | - | - | - |
| 3.6364 | 60 | 0.008 | - | - | - |
| 4.0 | 66 | - | 0.0095 | 0.9778 | - |
| 4.2424 | 70 | 0.0065 | - | - | - |
| 4.8485 | 80 | 0.0056 | - | - | - |
| 4.9697 | 82 | - | 0.0092 | 0.9749 | - |
| 5.4545 | 90 | 0.0056 | - | - | - |
| 6.0 | 99 | - | 0.0088 | 0.9766 | - |
| 6.0606 | 100 | 0.0045 | - | - | - |
| 6.6667 | 110 | 0.0044 | - | - | - |
| 6.9697 | 115 | - | 0.0087 | 0.9777 | - |
| 7.2727 | 120 | 0.0038 | - | - | - |
| 7.7576 | 128 | - | 0.0090 | 0.9777 | 0.9777 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- -
Model tree for srikarvar/fine_tuned_model_2
Base model
intfloat/multilingual-e5-smallEvaluation results
- Cosine Accuracy on pair class devself-reported0.948
- Cosine Accuracy Threshold on pair class devself-reported0.663
- Cosine F1 on pair class devself-reported0.956
- Cosine F1 Threshold on pair class devself-reported0.663
- Cosine Precision on pair class devself-reported0.915
- Cosine Recall on pair class devself-reported1.000
- Cosine Ap on pair class devself-reported0.978
- Dot Accuracy on pair class devself-reported0.948
- Dot Accuracy Threshold on pair class devself-reported0.663
- Dot F1 on pair class devself-reported0.956