File size: 9,224 Bytes
b8e5a99
 
 
 
2ef62d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e5a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925aa5b
 
b8e5a99
925aa5b
b8e5a99
 
2ef62d0
b8e5a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ef62d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e5a99
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from transformers import (
    PretrainedConfig,
    PreTrainedModel
)
from torch.nn import CrossEntropyLoss
from transformers.models.gpt_bigcode.modeling_gpt_bigcode import CausalLMOutputWithCrossAttentions
from typing import Optional, Tuple, Union
import torch

from transformers.processing_utils import ProcessorMixin
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode, pad
from transformers.feature_extraction_sequence_utils import BatchFeature
from transformers import AutoProcessor

class SimpleStarVectorProcessor(ProcessorMixin):
    attributes = ["tokenizer"]  # Only include tokenizer in attributes
    valid_kwargs = ["size", "mean", "std"]  # Add other parameters as valid kwargs
    image_processor_class = "AutoImageProcessor"
    tokenizer_class = "AutoTokenizer"

    def __init__(self, 
                 tokenizer=None,  # Make tokenizer the first argument
                 size=224, 
                 mean=None, 
                 std=None, 
                 **kwargs,
                 ):
        if mean is None:
            mean = (0.48145466, 0.4578275, 0.40821073)
        if std is None:
            std = (0.26862954, 0.26130258, 0.27577711)

        # Store these as instance variables
        self.mean = mean
        self.std = std
        self.size = size
        
        self.normalize = transforms.Normalize(mean=mean, std=std)        
        
        self.transform = transforms.Compose([
            transforms.Lambda(lambda img: img.convert("RGB") if img.mode == "RGBA" else img),
            transforms.Lambda(lambda img: self._pad_to_square(img)),
            transforms.Resize(size, interpolation=InterpolationMode.BICUBIC),
            transforms.ToTensor(),
            self.normalize
        ])

        # Initialize parent class with tokenizer
        super().__init__(tokenizer=tokenizer)


    def __call__(self, images=None, text=None, **kwargs) -> BatchFeature:
        """
        Process images and/or text inputs.
        
        Args:
            images: Optional image input(s)
            text: Optional text input(s)
            **kwargs: Additional arguments
        """
        if images is None and text is None:
            raise ValueError("You have to specify at least one of `images` or `text`.")

        image_inputs = {}
        if images is not None:
            if isinstance(images, (list, tuple)):
                images_ = [self.transform(img) for img in images]
            else:
                images_ = self.transform(images)
            image_inputs = {"pixel_values": images_}
        
        text_inputs = {}
        if text is not None:
            text_inputs = self.tokenizer(text, **kwargs)
        return BatchFeature(data={**text_inputs, **image_inputs})

AutoProcessor.register(SimpleStarVectorProcessor, SimpleStarVectorProcessor)


class StarVectorConfig(PretrainedConfig):
    model_type = "starvector"

    def __init__(
        self,
        starcoder_model_name: str = "bigcode/starcoderbase-1b",
        image_encoder_type: str = "clip",
        adapter_norm: str = "layer_norm",
        image_size: int = 224,
        max_length: int = 8192,
        max_length_train: int = 8192,
        use_flash_attn: bool = True,
        use_cache: bool = True,
        num_attention_heads: int = 16,
        num_hidden_layers: int = 24,
        vocab_size: int = 49152,
        hidden_size: int = 2048,
        num_kv_heads: int = 4,
        torch_dtype: str = "bfloat16",
        **kwargs,
    ):
        kwargs["torch_dtype"] = torch_dtype
        self.starcoder_model_name = starcoder_model_name
        self.image_encoder_type = image_encoder_type
        self.adapter_norm = adapter_norm
        self.image_size = image_size
        self.max_length = max_length
        self.max_length_train = max_length_train
        self.use_flash_attn = use_flash_attn
        self.use_cache = use_cache
        self.num_attention_heads = num_attention_heads
        self.num_hidden_layers = num_hidden_layers
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_kv_heads = num_kv_heads
        super().__init__(**kwargs)

class StarVectorForCausalLM(PreTrainedModel):
    config_class = StarVectorConfig
    _no_split_modules = []

    def __init__(self, config: StarVectorConfig, **kwargs):
        super().__init__(config)
        starcoder_model_name = config.starcoder_model_name
        if 'starcoder2' in starcoder_model_name:
            from starvector.model.models.starvector_v2 import StarVectorStarCoder2
            self.model = StarVectorStarCoder2(config=config, **kwargs)
        else:
            from starvector.model.models.starvector_v1 import StarVectorStarCoder
            self.model = StarVectorStarCoder(config=config, **kwargs)

    @property
    def supports_gradient_checkpointing(self):
        # If the underlying transformer (e.g., the one in StarCoderModel)
        # supports gradient checkpointing, delegate to it.
        if hasattr(self.model, 'svg_transformer'):
            return getattr(self.model.svg_transformer, 'supports_gradient_checkpointing', False)
        return False

    def gradient_checkpointing_enable(self):
        # Optionally, forward this call to the internal transformer.
        if hasattr(self.model, 'svg_transformer') and hasattr(self.model.svg_transformer, 'gradient_checkpointing_enable'):
            self.model.svg_transformer.gradient_checkpointing_enable()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        num_logits_to_keep: int = 0,
    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
        r"""
        labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model.svg_transformer.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        # If GRPO requested only the last tokens, slice accordingly.
        if num_logits_to_keep > 0:
            lm_logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
        else:
            lm_logits = self.lm_head(hidden_states)

        # lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            cross_attentions=transformer_outputs.cross_attentions,
        )
    
    # def forward(self, batch):
    #     return self.model(batch)

    def generate_im2svg(self, batch, **kwargs):
        return self.model.generate_im2svg(batch, **kwargs)
    
    def generate_im2text(self, batch, **kwargs):
        return self.model.generate_im2text(batch, **kwargs)

    def process_images(self, images):
        return self.model.image_encoder.process_images(images)