joanrodai commited on
Commit
2ef62d0
·
verified ·
1 Parent(s): 9d9ac6a

Update starvector_arch.py

Browse files
Files changed (1) hide show
  1. starvector_arch.py +164 -3
starvector_arch.py CHANGED
@@ -2,6 +2,81 @@ from transformers import (
2
  PretrainedConfig,
3
  PreTrainedModel
4
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  class StarVectorConfig(PretrainedConfig):
7
  model_type = "starvector"
@@ -24,6 +99,7 @@ class StarVectorConfig(PretrainedConfig):
24
  torch_dtype: str = "bfloat16",
25
  **kwargs,
26
  ):
 
27
  self.starcoder_model_name = starcoder_model_name
28
  self.image_encoder_type = image_encoder_type
29
  self.adapter_norm = adapter_norm
@@ -37,7 +113,6 @@ class StarVectorConfig(PretrainedConfig):
37
  self.vocab_size = vocab_size
38
  self.hidden_size = hidden_size
39
  self.num_kv_heads = num_kv_heads
40
- self.torch_dtype = torch_dtype
41
  super().__init__(**kwargs)
42
 
43
  class StarVectorForCausalLM(PreTrainedModel):
@@ -54,8 +129,94 @@ class StarVectorForCausalLM(PreTrainedModel):
54
  from starvector.model.models.starvector_v1 import StarVectorStarCoder
55
  self.model = StarVectorStarCoder(config=config, **kwargs)
56
 
57
- def forward(self, batch):
58
- return self.model(batch)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
  def generate_im2svg(self, batch, **kwargs):
61
  return self.model.generate_im2svg(batch, **kwargs)
 
2
  PretrainedConfig,
3
  PreTrainedModel
4
  )
5
+ from torch.nn import CrossEntropyLoss
6
+ from transformers.models.gpt_bigcode.modeling_gpt_bigcode import CausalLMOutputWithCrossAttentions
7
+ from typing import Optional, Tuple, Union
8
+ import torch
9
+
10
+ from transformers.processing_utils import ProcessorMixin
11
+ from torchvision import transforms
12
+ from torchvision.transforms.functional import InterpolationMode, pad
13
+ from transformers.feature_extraction_sequence_utils import BatchFeature
14
+ from transformers import AutoProcessor
15
+
16
+ class SimpleStarVectorProcessor(ProcessorMixin):
17
+ attributes = ["tokenizer"] # Only include tokenizer in attributes
18
+ valid_kwargs = ["size", "mean", "std"] # Add other parameters as valid kwargs
19
+ image_processor_class = "AutoImageProcessor"
20
+ tokenizer_class = "AutoTokenizer"
21
+
22
+ def __init__(self,
23
+ tokenizer=None, # Make tokenizer the first argument
24
+ size=224,
25
+ mean=None,
26
+ std=None,
27
+ **kwargs,
28
+ ):
29
+ if mean is None:
30
+ mean = (0.48145466, 0.4578275, 0.40821073)
31
+ if std is None:
32
+ std = (0.26862954, 0.26130258, 0.27577711)
33
+
34
+ # Store these as instance variables
35
+ self.mean = mean
36
+ self.std = std
37
+ self.size = size
38
+
39
+ self.normalize = transforms.Normalize(mean=mean, std=std)
40
+
41
+ self.transform = transforms.Compose([
42
+ transforms.Lambda(lambda img: img.convert("RGB") if img.mode == "RGBA" else img),
43
+ transforms.Lambda(lambda img: self._pad_to_square(img)),
44
+ transforms.Resize(size, interpolation=InterpolationMode.BICUBIC),
45
+ transforms.ToTensor(),
46
+ self.normalize
47
+ ])
48
+
49
+ # Initialize parent class with tokenizer
50
+ super().__init__(tokenizer=tokenizer)
51
+
52
+
53
+ def __call__(self, images=None, text=None, **kwargs) -> BatchFeature:
54
+ """
55
+ Process images and/or text inputs.
56
+
57
+ Args:
58
+ images: Optional image input(s)
59
+ text: Optional text input(s)
60
+ **kwargs: Additional arguments
61
+ """
62
+ if images is None and text is None:
63
+ raise ValueError("You have to specify at least one of `images` or `text`.")
64
+
65
+ image_inputs = {}
66
+ if images is not None:
67
+ if isinstance(images, (list, tuple)):
68
+ images_ = [self.transform(img) for img in images]
69
+ else:
70
+ images_ = self.transform(images)
71
+ image_inputs = {"pixel_values": images_}
72
+
73
+ text_inputs = {}
74
+ if text is not None:
75
+ text_inputs = self.tokenizer(text, **kwargs)
76
+ return BatchFeature(data={**text_inputs, **image_inputs})
77
+
78
+ AutoProcessor.register(SimpleStarVectorProcessor, SimpleStarVectorProcessor)
79
+
80
 
81
  class StarVectorConfig(PretrainedConfig):
82
  model_type = "starvector"
 
99
  torch_dtype: str = "bfloat16",
100
  **kwargs,
101
  ):
102
+ kwargs["torch_dtype"] = torch_dtype
103
  self.starcoder_model_name = starcoder_model_name
104
  self.image_encoder_type = image_encoder_type
105
  self.adapter_norm = adapter_norm
 
113
  self.vocab_size = vocab_size
114
  self.hidden_size = hidden_size
115
  self.num_kv_heads = num_kv_heads
 
116
  super().__init__(**kwargs)
117
 
118
  class StarVectorForCausalLM(PreTrainedModel):
 
129
  from starvector.model.models.starvector_v1 import StarVectorStarCoder
130
  self.model = StarVectorStarCoder(config=config, **kwargs)
131
 
132
+ @property
133
+ def supports_gradient_checkpointing(self):
134
+ # If the underlying transformer (e.g., the one in StarCoderModel)
135
+ # supports gradient checkpointing, delegate to it.
136
+ if hasattr(self.model, 'svg_transformer'):
137
+ return getattr(self.model.svg_transformer, 'supports_gradient_checkpointing', False)
138
+ return False
139
+
140
+ def gradient_checkpointing_enable(self):
141
+ # Optionally, forward this call to the internal transformer.
142
+ if hasattr(self.model, 'svg_transformer') and hasattr(self.model.svg_transformer, 'gradient_checkpointing_enable'):
143
+ self.model.svg_transformer.gradient_checkpointing_enable()
144
+
145
+ def forward(
146
+ self,
147
+ input_ids: Optional[torch.Tensor] = None,
148
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
149
+ attention_mask: Optional[torch.Tensor] = None,
150
+ token_type_ids: Optional[torch.Tensor] = None,
151
+ position_ids: Optional[torch.Tensor] = None,
152
+ head_mask: Optional[torch.Tensor] = None,
153
+ inputs_embeds: Optional[torch.Tensor] = None,
154
+ encoder_hidden_states: Optional[torch.Tensor] = None,
155
+ encoder_attention_mask: Optional[torch.Tensor] = None,
156
+ labels: Optional[torch.Tensor] = None,
157
+ use_cache: Optional[bool] = None,
158
+ output_attentions: Optional[bool] = None,
159
+ output_hidden_states: Optional[bool] = None,
160
+ return_dict: Optional[bool] = None,
161
+ num_logits_to_keep: int = 0,
162
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
163
+ r"""
164
+ labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
165
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
166
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
167
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
168
+ """
169
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
170
+
171
+ transformer_outputs = self.model.svg_transformer.transformer(
172
+ input_ids,
173
+ past_key_values=past_key_values,
174
+ attention_mask=attention_mask,
175
+ token_type_ids=token_type_ids,
176
+ position_ids=position_ids,
177
+ head_mask=head_mask,
178
+ inputs_embeds=inputs_embeds,
179
+ encoder_hidden_states=encoder_hidden_states,
180
+ encoder_attention_mask=encoder_attention_mask,
181
+ use_cache=use_cache,
182
+ output_attentions=output_attentions,
183
+ output_hidden_states=output_hidden_states,
184
+ return_dict=return_dict,
185
+ )
186
+ hidden_states = transformer_outputs[0]
187
+
188
+ # If GRPO requested only the last tokens, slice accordingly.
189
+ if num_logits_to_keep > 0:
190
+ lm_logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
191
+ else:
192
+ lm_logits = self.lm_head(hidden_states)
193
+
194
+ # lm_logits = self.lm_head(hidden_states)
195
+
196
+ loss = None
197
+ if labels is not None:
198
+ # Shift so that tokens < n predict n
199
+ shift_logits = lm_logits[..., :-1, :].contiguous()
200
+ shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
201
+ # Flatten the tokens
202
+ loss_fct = CrossEntropyLoss()
203
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
204
+
205
+ if not return_dict:
206
+ output = (lm_logits,) + transformer_outputs[1:]
207
+ return ((loss,) + output) if loss is not None else output
208
+
209
+ return CausalLMOutputWithCrossAttentions(
210
+ loss=loss,
211
+ logits=lm_logits,
212
+ past_key_values=transformer_outputs.past_key_values,
213
+ hidden_states=transformer_outputs.hidden_states,
214
+ attentions=transformer_outputs.attentions,
215
+ cross_attentions=transformer_outputs.cross_attentions,
216
+ )
217
+
218
+ # def forward(self, batch):
219
+ # return self.model(batch)
220
 
221
  def generate_im2svg(self, batch, **kwargs):
222
  return self.model.generate_im2svg(batch, **kwargs)