Donka-V1

This model was a part of a undergrad research project, the goal was to implement the well known paper - Attention is All You need.

The following model can translate short macedonian text to english text. The model is quite small and simple but it works with short sentences. It is a Seq2Seq Transformer trained on around 500_000 Macedonian-English Sentences, mostly gathered from the internet.

The name of the model is derivied from the Macedonian female name Маке-донка (Make-DONKA), to associate the ability of the models task to translate macedonian text.

We want to give Special thanks to our faculty, and our professor, our assitant for their encouragement and mentorship , as well as special shoutout to the people mentioned bellow for the dataset resources.

Running the model

License:

All of the models and .vocab files are Licensed under CC BY-NC 4.0

Dataset atribution:

Huge thank you from the following people and institiutions, without them our reasearch would have been imposible.

Our dataset is combination from the following websites/services/books/blogs.

We got written permission from the following wonderful people:

Honorable mentions:

Everything we used for our Data set is under CC BY-NC 4.0

Some checkpoint specs for the model:

Checkpoint keys: dict_keys(['epoch', 'model_state_dict', 'optimizer_state_dict', 'scaler_state_dict'])
Saved at epoch: 18

Model state_dict contents:
transformer_encoder.layers.0.self_attn.in_proj_weight shape: (1536, 512)
transformer_encoder.layers.0.self_attn.in_proj_bias shape: (1536,)
transformer_encoder.layers.0.self_attn.out_proj.weight shape: (512, 512)
transformer_encoder.layers.0.self_attn.out_proj.bias shape: (512,)
transformer_encoder.layers.0.linear1.weight        shape: (512, 512)
transformer_encoder.layers.0.linear1.bias          shape: (512,)
transformer_encoder.layers.0.linear2.weight        shape: (512, 512)
transformer_encoder.layers.0.linear2.bias          shape: (512,)
transformer_encoder.layers.0.norm1.weight          shape: (512,)
transformer_encoder.layers.0.norm1.bias            shape: (512,)
transformer_encoder.layers.0.norm2.weight          shape: (512,)
transformer_encoder.layers.0.norm2.bias            shape: (512,)
transformer_encoder.layers.1.self_attn.in_proj_weight shape: (1536, 512)
transformer_encoder.layers.1.self_attn.in_proj_bias shape: (1536,)
transformer_encoder.layers.1.self_attn.out_proj.weight shape: (512, 512)
transformer_encoder.layers.1.self_attn.out_proj.bias shape: (512,)
transformer_encoder.layers.1.linear1.weight        shape: (512, 512)
transformer_encoder.layers.1.linear1.bias          shape: (512,)
transformer_encoder.layers.1.linear2.weight        shape: (512, 512)
transformer_encoder.layers.1.linear2.bias          shape: (512,)
transformer_encoder.layers.1.norm1.weight          shape: (512,)
transformer_encoder.layers.1.norm1.bias            shape: (512,)
transformer_encoder.layers.1.norm2.weight          shape: (512,)
transformer_encoder.layers.1.norm2.bias            shape: (512,)
transformer_encoder.layers.2.self_attn.in_proj_weight shape: (1536, 512)
transformer_encoder.layers.2.self_attn.in_proj_bias shape: (1536,)
transformer_encoder.layers.2.self_attn.out_proj.weight shape: (512, 512)
transformer_encoder.layers.2.self_attn.out_proj.bias shape: (512,)
transformer_encoder.layers.2.linear1.weight        shape: (512, 512)
transformer_encoder.layers.2.linear1.bias          shape: (512,)
transformer_encoder.layers.2.linear2.weight        shape: (512, 512)
transformer_encoder.layers.2.linear2.bias          shape: (512,)
transformer_encoder.layers.2.norm1.weight          shape: (512,)
transformer_encoder.layers.2.norm1.bias            shape: (512,)
transformer_encoder.layers.2.norm2.weight          shape: (512,)
transformer_encoder.layers.2.norm2.bias            shape: (512,)
transformer_decoder.layers.0.self_attn.in_proj_weight shape: (1536, 512)
transformer_decoder.layers.0.self_attn.in_proj_bias shape: (1536,)
transformer_decoder.layers.0.self_attn.out_proj.weight shape: (512, 512)
transformer_decoder.layers.0.self_attn.out_proj.bias shape: (512,)
transformer_decoder.layers.0.multihead_attn.in_proj_weight shape: (1536, 512)
transformer_decoder.layers.0.multihead_attn.in_proj_bias shape: (1536,)
transformer_decoder.layers.0.multihead_attn.out_proj.weight shape: (512, 512)
transformer_decoder.layers.0.multihead_attn.out_proj.bias shape: (512,)
transformer_decoder.layers.0.linear1.weight        shape: (512, 512)
transformer_decoder.layers.0.linear1.bias          shape: (512,)
transformer_decoder.layers.0.linear2.weight        shape: (512, 512)
transformer_decoder.layers.0.linear2.bias          shape: (512,)
transformer_decoder.layers.0.norm1.weight          shape: (512,)
transformer_decoder.layers.0.norm1.bias            shape: (512,)
transformer_decoder.layers.0.norm2.weight          shape: (512,)
transformer_decoder.layers.0.norm2.bias            shape: (512,)
transformer_decoder.layers.0.norm3.weight          shape: (512,)
transformer_decoder.layers.0.norm3.bias            shape: (512,)
transformer_decoder.layers.1.self_attn.in_proj_weight shape: (1536, 512)
transformer_decoder.layers.1.self_attn.in_proj_bias shape: (1536,)
transformer_decoder.layers.1.self_attn.out_proj.weight shape: (512, 512)
transformer_decoder.layers.1.self_attn.out_proj.bias shape: (512,)
transformer_decoder.layers.1.multihead_attn.in_proj_weight shape: (1536, 512)
transformer_decoder.layers.1.multihead_attn.in_proj_bias shape: (1536,)
transformer_decoder.layers.1.multihead_attn.out_proj.weight shape: (512, 512)
transformer_decoder.layers.1.multihead_attn.out_proj.bias shape: (512,)
transformer_decoder.layers.1.linear1.weight        shape: (512, 512)
transformer_decoder.layers.1.linear1.bias          shape: (512,)
transformer_decoder.layers.1.linear2.weight        shape: (512, 512)
transformer_decoder.layers.1.linear2.bias          shape: (512,)
transformer_decoder.layers.1.norm1.weight          shape: (512,)
transformer_decoder.layers.1.norm1.bias            shape: (512,)
transformer_decoder.layers.1.norm2.weight          shape: (512,)
transformer_decoder.layers.1.norm2.bias            shape: (512,)
transformer_decoder.layers.1.norm3.weight          shape: (512,)
transformer_decoder.layers.1.norm3.bias            shape: (512,)
transformer_decoder.layers.2.self_attn.in_proj_weight shape: (1536, 512)
transformer_decoder.layers.2.self_attn.in_proj_bias shape: (1536,)
transformer_decoder.layers.2.self_attn.out_proj.weight shape: (512, 512)
transformer_decoder.layers.2.self_attn.out_proj.bias shape: (512,)
transformer_decoder.layers.2.multihead_attn.in_proj_weight shape: (1536, 512)
transformer_decoder.layers.2.multihead_attn.in_proj_bias shape: (1536,)
transformer_decoder.layers.2.multihead_attn.out_proj.weight shape: (512, 512)
transformer_decoder.layers.2.multihead_attn.out_proj.bias shape: (512,)
transformer_decoder.layers.2.linear1.weight        shape: (512, 512)
transformer_decoder.layers.2.linear1.bias          shape: (512,)
transformer_decoder.layers.2.linear2.weight        shape: (512, 512)
transformer_decoder.layers.2.linear2.bias          shape: (512,)
transformer_decoder.layers.2.norm1.weight          shape: (512,)
transformer_decoder.layers.2.norm1.bias            shape: (512,)
transformer_decoder.layers.2.norm2.weight          shape: (512,)
transformer_decoder.layers.2.norm2.bias            shape: (512,)
transformer_decoder.layers.2.norm3.weight          shape: (512,)
transformer_decoder.layers.2.norm3.bias            shape: (512,)
generator.weight                                   shape: (8257, 512)
generator.bias                                     shape: (8257,)
src_tok_emb.embedding.weight                       shape: (11370, 512)
tgt_tok_emb.embedding.weight                       shape: (8257, 512)
positional_encoding.pos_embedding                  shape: (10000, 1, 512)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support