DistilBert-finetuned-Hackaton

This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1456
  • Accuracy: 0.4283
  • F1: 0.4344

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.3155 1.0 338 2.6640 0.33 0.3161
2.2064 2.0 676 2.5991 0.3283 0.3094
2.0703 3.0 1014 2.5172 0.3467 0.3347
2.0222 4.0 1352 2.4497 0.3567 0.3434
1.9197 5.0 1690 2.3951 0.375 0.3639
1.8334 6.0 2028 2.3398 0.375 0.3646
1.7327 7.0 2366 2.3231 0.3833 0.3749
1.6621 8.0 2704 2.3040 0.3867 0.3787
1.5902 9.0 3042 2.2702 0.3883 0.3809
1.5554 10.0 3380 2.2230 0.4167 0.4143
1.5008 11.0 3718 2.2277 0.4067 0.3999
1.4451 12.0 4056 2.2023 0.4033 0.4025
1.3788 13.0 4394 2.1953 0.41 0.4066
1.3418 14.0 4732 2.1774 0.4083 0.4036
1.2689 15.0 5070 2.1798 0.41 0.4123
1.2495 16.0 5408 2.1700 0.4233 0.4228
1.1946 17.0 5746 2.1653 0.42 0.4241
1.1652 18.0 6084 2.1672 0.4283 0.4279
1.1428 19.0 6422 2.1631 0.4217 0.4259
1.1027 20.0 6760 2.1501 0.4133 0.4189
1.063 21.0 7098 2.1522 0.4183 0.4244
1.0621 22.0 7436 2.1480 0.42 0.4258
1.0412 23.0 7774 2.1491 0.4217 0.4285
1.0311 24.0 8112 2.1493 0.4267 0.4333
1.0195 25.0 8450 2.1456 0.4283 0.4344

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
15
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support