metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: stulcrad/Robeczech-PRETRAINED4-CERED3
tags:
- generated_from_trainer
datasets:
- generator
metrics:
- accuracy
model-index:
- name: Robeczech-PRETRAINED43-CERED2
results: []
Robeczech-PRETRAINED43-CERED2
This model is a fine-tuned version of stulcrad/Robeczech-PRETRAINED4-CERED3 on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 1.1137
- Accuracy: 0.8807
- Micro Precision: 0.8807
- Micro Recall: 0.8807
- Micro F1: 0.8807
- Macro Precision: 0.8503
- Macro Recall: 0.8424
- Macro F1: 0.8426
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 |
---|---|---|---|---|---|---|---|---|---|---|
0.4181 | 1.0 | 15074 | 0.5844 | 0.8550 | 0.8550 | 0.8550 | 0.8550 | 0.8202 | 0.7858 | 0.7946 |
0.3727 | 2.0 | 30148 | 0.5572 | 0.8620 | 0.8620 | 0.8620 | 0.8620 | 0.8293 | 0.8058 | 0.8102 |
0.282 | 3.0 | 45222 | 0.6841 | 0.8567 | 0.8567 | 0.8567 | 0.8567 | 0.8174 | 0.8071 | 0.8010 |
0.2209 | 4.0 | 60296 | 0.6510 | 0.8672 | 0.8672 | 0.8672 | 0.8672 | 0.8171 | 0.8205 | 0.8132 |
0.1918 | 5.0 | 75370 | 0.7609 | 0.8665 | 0.8665 | 0.8665 | 0.8665 | 0.8254 | 0.8171 | 0.8162 |
0.13 | 6.0 | 90444 | 0.8197 | 0.8724 | 0.8724 | 0.8724 | 0.8724 | 0.8347 | 0.8345 | 0.8302 |
0.0959 | 7.0 | 105518 | 0.8901 | 0.8721 | 0.8721 | 0.8721 | 0.8721 | 0.8304 | 0.8256 | 0.8236 |
0.0799 | 8.0 | 120592 | 1.0162 | 0.8749 | 0.8749 | 0.8749 | 0.8749 | 0.8364 | 0.8361 | 0.8316 |
0.0454 | 9.0 | 135666 | 1.0664 | 0.8747 | 0.8747 | 0.8747 | 0.8747 | 0.8280 | 0.8363 | 0.8284 |
0.0274 | 10.0 | 150740 | 1.1455 | 0.8768 | 0.8768 | 0.8768 | 0.8768 | 0.8326 | 0.8369 | 0.8313 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3