stulcrad's picture
End of training
113b6c9 verified
metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: stulcrad/Robeczech-PRETRAINED4-CERED3
tags:
  - generated_from_trainer
datasets:
  - generator
metrics:
  - accuracy
model-index:
  - name: Robeczech-PRETRAINED43-CERED2
    results: []

Robeczech-PRETRAINED43-CERED2

This model is a fine-tuned version of stulcrad/Robeczech-PRETRAINED4-CERED3 on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1137
  • Accuracy: 0.8807
  • Micro Precision: 0.8807
  • Micro Recall: 0.8807
  • Micro F1: 0.8807
  • Macro Precision: 0.8503
  • Macro Recall: 0.8424
  • Macro F1: 0.8426

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 24
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Micro Precision Micro Recall Micro F1 Macro Precision Macro Recall Macro F1
0.4181 1.0 15074 0.5844 0.8550 0.8550 0.8550 0.8550 0.8202 0.7858 0.7946
0.3727 2.0 30148 0.5572 0.8620 0.8620 0.8620 0.8620 0.8293 0.8058 0.8102
0.282 3.0 45222 0.6841 0.8567 0.8567 0.8567 0.8567 0.8174 0.8071 0.8010
0.2209 4.0 60296 0.6510 0.8672 0.8672 0.8672 0.8672 0.8171 0.8205 0.8132
0.1918 5.0 75370 0.7609 0.8665 0.8665 0.8665 0.8665 0.8254 0.8171 0.8162
0.13 6.0 90444 0.8197 0.8724 0.8724 0.8724 0.8724 0.8347 0.8345 0.8302
0.0959 7.0 105518 0.8901 0.8721 0.8721 0.8721 0.8721 0.8304 0.8256 0.8236
0.0799 8.0 120592 1.0162 0.8749 0.8749 0.8749 0.8749 0.8364 0.8361 0.8316
0.0454 9.0 135666 1.0664 0.8747 0.8747 0.8747 0.8747 0.8280 0.8363 0.8284
0.0274 10.0 150740 1.1455 0.8768 0.8768 0.8768 0.8768 0.8326 0.8369 0.8313

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3