suarkadipa/GPT-2-finetuned-papers

This model is a fine-tuned version of distilgpt2 on an CShorten/ML-ArXiv-Papers dataset. Based on https://python.plainenglish.io/i-fine-tuned-gpt-2-on-100k-scientific-papers-heres-the-result-903f0784fe65 It achieves the following results on the evaluation set:

  • Train Loss: 2.4225
  • Validation Loss: 2.2164
  • Epoch: 0

Model description

More information needed

Intended uses & limitations

How to run in Google Colab

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer_fromhub = AutoTokenizer.from_pretrained("suarkadipa/GPT-2-finetuned-papers")
model_fromhub = AutoModelForCausalLM.from_pretrained("suarkadipa/GPT-2-finetuned-papers", from_tf=True)

text_generator = pipeline(
    "text-generation",
    model=model_fromhub,
    tokenizer=tokenizer_fromhub,
    framework="tf",
    max_new_tokens=3000
)

// change with your text
test_sentence = "the role of recommender systems"
res=text_generator(test_sentence)[0]["generated_text"].replace("\n", " ")
res

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'ExponentialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 500, 'decay_rate': 0.95, 'staircase': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
2.4225 2.2164 0

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for suarkadipa/GPT-2-finetuned-papers

Finetuned
(594)
this model

Dataset used to train suarkadipa/GPT-2-finetuned-papers