Edit model card

whisper-a-nomimose

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0723
  • Wer: 15.2655

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 132
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.3968 0.9217 100 0.7677 512.9794
0.3388 1.8387 200 0.3331 93.3628
0.2711 2.7558 300 0.2512 87.0944
0.2383 3.6728 400 0.2198 87.9056
0.2096 4.5899 500 0.1971 80.3835
0.2131 5.5069 600 0.1680 75.5900
0.1498 6.4240 700 0.1433 56.1209
0.1152 7.3410 800 0.1094 41.0767
0.0833 8.2581 900 0.1193 65.9292
0.0653 9.1751 1000 0.0728 25.1475
0.0444 10.0922 1100 0.0781 24.4100
0.0383 11.0092 1200 0.0537 17.6991
0.0269 11.9309 1300 0.0658 18.0678
0.0182 12.8479 1400 0.0641 19.3215
0.0128 13.7650 1500 0.0679 15.8555
0.0068 14.6820 1600 0.0723 15.2655

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
0
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for susmitabhatt/whisper-a-nomimose

Finetuned
(1903)
this model