XLM-RoBERTa-Base-Conll2003-English-NER-Finetune
This model is a fine-tuned version of xlm-roberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1887
- Precision: 0.9051
- Recall: 0.9207
- F1: 0.9128
- Accuracy: 0.9820
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.6956 | 0.3333 | 1441 | 0.1847 | 0.5575 | 0.5845 | 0.5707 | 0.9322 |
0.1126 | 0.6667 | 2882 | 0.1192 | 0.8533 | 0.8762 | 0.8646 | 0.9748 |
0.0678 | 1.0 | 4323 | 0.1404 | 0.8551 | 0.8899 | 0.8721 | 0.9756 |
0.0528 | 1.3333 | 5764 | 0.1332 | 0.8868 | 0.9040 | 0.8953 | 0.9800 |
0.0523 | 1.6667 | 7205 | 0.1352 | 0.8868 | 0.9083 | 0.8974 | 0.9800 |
0.0494 | 2.0 | 8646 | 0.1437 | 0.8855 | 0.9063 | 0.8958 | 0.9793 |
0.0351 | 2.3333 | 10087 | 0.1592 | 0.8867 | 0.9092 | 0.8978 | 0.9794 |
0.0341 | 2.6667 | 11528 | 0.1532 | 0.8919 | 0.9131 | 0.9024 | 0.9801 |
0.034 | 3.0 | 12969 | 0.1404 | 0.8967 | 0.9155 | 0.9060 | 0.9808 |
0.024 | 3.3333 | 14410 | 0.1601 | 0.8978 | 0.9145 | 0.9061 | 0.9805 |
0.0267 | 3.6667 | 15851 | 0.1563 | 0.9047 | 0.9180 | 0.9113 | 0.9819 |
0.0255 | 4.0 | 17292 | 0.1406 | 0.9093 | 0.9193 | 0.9142 | 0.9827 |
0.0199 | 4.3333 | 18733 | 0.1604 | 0.9047 | 0.9225 | 0.9135 | 0.9821 |
0.0187 | 4.6667 | 20174 | 0.1541 | 0.9106 | 0.9251 | 0.9178 | 0.9829 |
0.0169 | 5.0 | 21615 | 0.1692 | 0.9009 | 0.9163 | 0.9085 | 0.9814 |
0.0159 | 5.3333 | 23056 | 0.1738 | 0.9012 | 0.9205 | 0.9107 | 0.9817 |
0.0141 | 5.6667 | 24497 | 0.1610 | 0.9039 | 0.9178 | 0.9108 | 0.9821 |
0.0141 | 6.0 | 25938 | 0.1797 | 0.8977 | 0.9164 | 0.9070 | 0.9805 |
0.0105 | 6.3333 | 27379 | 0.1707 | 0.9026 | 0.9187 | 0.9106 | 0.9821 |
0.0104 | 6.6667 | 28820 | 0.1832 | 0.9036 | 0.9191 | 0.9113 | 0.9812 |
0.0135 | 7.0 | 30261 | 0.1743 | 0.9024 | 0.9214 | 0.9118 | 0.9817 |
0.0101 | 7.3333 | 31702 | 0.1877 | 0.9006 | 0.9194 | 0.9099 | 0.9812 |
0.0113 | 7.6667 | 33143 | 0.1893 | 0.9009 | 0.9187 | 0.9097 | 0.9811 |
0.0088 | 8.0 | 34584 | 0.1867 | 0.9050 | 0.9196 | 0.9123 | 0.9818 |
0.0068 | 8.3333 | 36025 | 0.1901 | 0.9022 | 0.9182 | 0.9101 | 0.9812 |
0.0088 | 8.6667 | 37466 | 0.1956 | 0.9037 | 0.9193 | 0.9114 | 0.9813 |
0.0085 | 9.0 | 38907 | 0.1873 | 0.9055 | 0.9216 | 0.9135 | 0.9820 |
0.0068 | 9.3333 | 40348 | 0.1922 | 0.9049 | 0.9217 | 0.9133 | 0.9817 |
0.006 | 9.6667 | 41789 | 0.1915 | 0.9047 | 0.9214 | 0.9130 | 0.9817 |
0.006 | 10.0 | 43230 | 0.1887 | 0.9051 | 0.9207 | 0.9128 | 0.9820 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 115
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for swtb/XLM-RoBERTa-Base-Conll2003-English-NER-Finetune
Base model
FacebookAI/xlm-roberta-baseDataset used to train swtb/XLM-RoBERTa-Base-Conll2003-English-NER-Finetune
Evaluation results
- Precision on conll2003test set self-reported0.905
- Recall on conll2003test set self-reported0.921
- F1 on conll2003test set self-reported0.913
- Accuracy on conll2003test set self-reported0.982