Built with Axolotl

See axolotl config

axolotl version: 0.13.0.dev0

base_model: syvai/jacob-kan-tale-v2

hub_model_id: syvai/jacob-kan-tale-v3

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

datasets:
  - path: syvai/jacob-tts-zac
    type:  # leave empty to load pre-tokenized
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./outputs/out

sequence_len: 4092
sample_packing: true


wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 2e-5

bf16: auto
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_ratio: 0.01
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.05

special_tokens:
  pad_token: <custom_token_7>

# save_first_step: true  # uncomment this to validate checkpoint saving works with your config

jacob-kan-tale-v3

This model is a fine-tuned version of syvai/jacob-kan-tale-v2 on the syvai/jacob-tts-zac dataset. It achieves the following results on the evaluation set:

  • Loss: 4.9049
  • Memory/max Active (gib): 24.76
  • Memory/max Allocated (gib): 24.76
  • Memory/device Reserved (gib): 29.81

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • training_steps: 2

Training results

Training Loss Epoch Step Validation Loss Active (gib) Allocated (gib) Reserved (gib)
No log 0 0 5.0922 12.44 12.44 12.48
5.1069 0.8 1 4.9320 24.76 24.76 29.81
4.9685 1.0 2 4.9049 24.76 24.76 29.81

Framework versions

  • Transformers 4.55.3
  • Pytorch 2.7.1+cu126
  • Datasets 2.19.2
  • Tokenizers 0.21.4
Downloads last month
2
Safetensors
Model size
3.3B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for syvai/jacob-kan-tale-v3

Finetuned
(1)
this model

Dataset used to train syvai/jacob-kan-tale-v3

Space using syvai/jacob-kan-tale-v3 1