See axolotl config
axolotl version: 0.8.0
base_model: syvai/tts-v1-pretrained
# Automatically upload checkpoint and final model to HF
hub_model_id: syvai/tts-v1-finetuned
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
datasets:
- path: syvai/zac-coral-tts
type:
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
eval_sample_packing: False
output_dir: ./outputs/finetuned
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: orph
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 2e-5
bf16: auto
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 3
evals_per_epoch: 5
saves_per_epoch: 5
weight_decay: 0.05
special_tokens:
pad_token: <custom_token_7>
tts-v1-finetuned
This model is a fine-tuned version of syvai/tts-v1-pretrained on the syvai/zac-coral-tts dataset. It achieves the following results on the evaluation set:
- Loss: 4.2860
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.9492 | 0.0246 | 1 | 4.8478 |
4.7181 | 0.1969 | 8 | 4.5872 |
4.5871 | 0.3938 | 16 | 4.4631 |
4.557 | 0.5908 | 24 | 4.3972 |
4.4965 | 0.7877 | 32 | 4.3521 |
4.4697 | 0.9846 | 40 | 4.3258 |
4.4525 | 1.1723 | 48 | 4.3083 |
4.4301 | 1.3692 | 56 | 4.2980 |
4.4459 | 1.5662 | 64 | 4.2915 |
4.4382 | 1.7631 | 72 | 4.2893 |
4.4315 | 1.96 | 80 | 4.2866 |
4.4178 | 2.1477 | 88 | 4.2861 |
4.4501 | 2.3446 | 96 | 4.2859 |
4.4121 | 2.5415 | 104 | 4.2856 |
4.4164 | 2.7385 | 112 | 4.2859 |
4.4264 | 2.9354 | 120 | 4.2860 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 21
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support