distilbert-base-uncased-finetuned-pubmed-lora-trained-tabbas97
This model is a fine-tuned version of distilbert-base-uncased on the pubmed-summarization dataset. It achieves the following results on the evaluation set:
- Loss: 1.9256
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.1986 | 0.1667 | 500 | 2.0156 |
2.1414 | 0.3334 | 1000 | 1.9893 |
2.1247 | 0.5002 | 1500 | 1.9770 |
2.1106 | 0.6669 | 2000 | 1.9640 |
2.103 | 0.8336 | 2500 | 1.9548 |
2.0974 | 1.0003 | 3000 | 1.9519 |
2.0874 | 1.1671 | 3500 | 1.9506 |
2.0842 | 1.3338 | 4000 | 1.9470 |
2.0799 | 1.5005 | 4500 | 1.9406 |
2.0781 | 1.6672 | 5000 | 1.9363 |
2.0763 | 1.8339 | 5500 | 1.9371 |
2.0664 | 2.0007 | 6000 | 1.9311 |
2.0717 | 2.1674 | 6500 | 1.9277 |
2.0683 | 2.3341 | 7000 | 1.9247 |
2.0622 | 2.5008 | 7500 | 1.9290 |
2.0614 | 2.6676 | 8000 | 1.9170 |
2.0614 | 2.8343 | 8500 | 1.9239 |
2.0646 | 3.0010 | 9000 | 1.9211 |
Framework versions
- PEFT 0.11.1
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for tabbas97/distilbert-base-uncased-finetuned-pubmed-lora-trained-tabbas97
Base model
distilbert/distilbert-base-uncased