distilbert-base-uncased-finetuned-pubmed-lora-trained-tabbas97

This model is a fine-tuned version of distilbert-base-uncased on the pubmed-summarization dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.1986 0.1667 500 2.0156
2.1414 0.3334 1000 1.9893
2.1247 0.5002 1500 1.9770
2.1106 0.6669 2000 1.9640
2.103 0.8336 2500 1.9548
2.0974 1.0003 3000 1.9519
2.0874 1.1671 3500 1.9506
2.0842 1.3338 4000 1.9470
2.0799 1.5005 4500 1.9406
2.0781 1.6672 5000 1.9363
2.0763 1.8339 5500 1.9371
2.0664 2.0007 6000 1.9311
2.0717 2.1674 6500 1.9277
2.0683 2.3341 7000 1.9247
2.0622 2.5008 7500 1.9290
2.0614 2.6676 8000 1.9170
2.0614 2.8343 8500 1.9239
2.0646 3.0010 9000 1.9211

Framework versions

  • PEFT 0.11.1
  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tabbas97/distilbert-base-uncased-finetuned-pubmed-lora-trained-tabbas97

Adapter
(226)
this model