SD3.5-LoRA-Korean-Basic-Design

This is a LyCORIS adapter derived from stabilityai/stable-diffusion-3.5-large.

The main validation prompt used during training was:

Using a strawberry and a stainless steel whisk, create a composition that expresses a sense of rhythm and vibrancy, basic design.

Validation settings

  • CFG: 5.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
Using a strawberry and a stainless steel whisk, create a composition that expresses a sense of rhythm and vibrancy, basic design.
Prompt
A dynamic interplay of tumbling dice and flowing red ribbons wrapping around metallic pipes, basic design style.
Prompt
A dynamic composition of transparent light bulbs intertwined with flowing golden and blue ribbons, basic design style.
Prompt
Using a wine glass and wooden tongs, express a moment of tension and destruction, basic design.
Prompt
A dynamic explosion of metallic whistles and shattering biscuit sticks, all entangled with vibrant, colorful ribbons, basic design style.
Prompt
A glass chess piece being tightly wrapped and constricted by a heavy, metallic chain, creating a sense of tension and imminent fracture, basic design.

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 2
  • Training steps: 2000
  • Learning rate: 0.0001
  • Max grad norm: 0.01
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: Pure BF16
  • Quantised: Yes: int8-quanto
  • Xformers: Not used
  • LyCORIS Config:
{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 16,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 16
            },
            "FeedForward": {
                "factor": 8
            }
        }
    }
}

Datasets

my-dataset-512

  • Repeats: 10
  • Total number of images: 17
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

my-dataset-1024

  • Repeats: 10
  • Total number of images: 17
  • Total number of aspect buckets: 4
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

my-dataset-512-crop

  • Repeats: 10
  • Total number of images: 17
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square
  • Used for regularisation data: No

my-dataset-1024-crop

  • Repeats: 10
  • Total number of images: 17
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square
  • Used for regularisation data: No

Inference

import torch
from diffusers import StableDiffusion3Pipeline
from lycoris import create_lycoris_from_weights

adapter_id = 'taewan2002/SD3.5-LoRA-Korean-Basic-Design'
pipeline = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16)
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()

prompt = "Using a wine glass and wooden tongs, express a moment of tension and destruction, basic design."

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1072,
    height=720,
    guidance_scale=5.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
16
Inference Examples
Examples
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for taewan2002/SD3.5-LoRA-Korean-Basic-Design

Adapter
(347)
this model