SD3.5-LoRA-Korean-Basic-Design
This is a LyCORIS adapter derived from stabilityai/stable-diffusion-3.5-large.
The main validation prompt used during training was:
Using a strawberry and a stainless steel whisk, create a composition that expresses a sense of rhythm and vibrancy, basic design.
Validation settings
- CFG:
5.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
None
- Seed:
42
- Resolution:
1024x1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:

- Prompt
- Using a strawberry and a stainless steel whisk, create a composition that expresses a sense of rhythm and vibrancy, basic design.

- Prompt
- A dynamic interplay of tumbling dice and flowing red ribbons wrapping around metallic pipes, basic design style.

- Prompt
- A dynamic composition of transparent light bulbs intertwined with flowing golden and blue ribbons, basic design style.

- Prompt
- Using a wine glass and wooden tongs, express a moment of tension and destruction, basic design.

- Prompt
- A dynamic explosion of metallic whistles and shattering biscuit sticks, all entangled with vibrant, colorful ribbons, basic design style.

- Prompt
- A glass chess piece being tightly wrapped and constricted by a heavy, metallic chain, creating a sense of tension and imminent fracture, basic design.
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 2
- Training steps: 2000
- Learning rate: 0.0001
- Max grad norm: 0.01
- Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
Datasets
my-dataset-512
- Repeats: 10
- Total number of images: 17
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
my-dataset-1024
- Repeats: 10
- Total number of images: 17
- Total number of aspect buckets: 4
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
my-dataset-512-crop
- Repeats: 10
- Total number of images: 17
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
my-dataset-1024-crop
- Repeats: 10
- Total number of images: 17
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
Inference
import torch
from diffusers import StableDiffusion3Pipeline
from lycoris import create_lycoris_from_weights
adapter_id = 'taewan2002/SD3.5-LoRA-Korean-Basic-Design'
pipeline = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16)
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()
prompt = "Using a wine glass and wooden tongs, express a moment of tension and destruction, basic design."
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1072,
height=720,
guidance_scale=5.0,
).images[0]
image.save("output.png", format="PNG")
- Downloads last month
- 16
Model tree for taewan2002/SD3.5-LoRA-Korean-Basic-Design
Base model
stabilityai/stable-diffusion-3.5-large