lejos-borges-simpletuner-lora

This is a LyCORIS adapter derived from stabilityai/stable-diffusion-3.5-large.

The main validation prompt used during training was:

cinematic product photography, a high-detail, realistic studio shot on a pristine white marble surface. A Borges Extra Virgin Olive Oil bottle (1L, green) stands prominently, with a bottle of Borges Natura Apple Cider (500ml, clear glass with golden liquid) positioned slightly behind it. The lighting is bright and diffused, creating soft shadows. The bottles are the sole focus of the image, with no other elements present. The composition is minimalist and sleek, emphasizing the form and packaging of the products.

Validation settings

  • CFG: 7.0
  • CFG Rescale: 0.7
  • Steps: 20
  • Sampler: FlowMatchEulerDiscreteScheduler
  • Seed: 42
  • Resolution: 1024x1024
  • Skip-layer guidance:

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
cinematic product photography, a high-detail, realistic studio shot on a pristine white marble surface. A Borges Extra Virgin Olive Oil bottle (1L, green) stands prominently, with a bottle of Borges Natura Apple Cider (500ml, clear glass with golden liquid) positioned slightly behind it. The lighting is bright and diffused, creating soft shadows. The bottles are the sole focus of the image, with no other elements present. The composition is minimalist and sleek, emphasizing the form and packaging of the products.
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 41
  • Training steps: 3000
  • Learning rate: 0.0001
    • Learning rate schedule: cosine
    • Warmup steps: 200
  • Max grad value: 2.0
  • Effective batch size: 8
    • Micro-batch size: 8
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True
  • Prediction type: flow_matching (extra parameters=['shift=3'])
  • Optimizer: adamw_bf16
  • Trainable parameter precision: Pure BF16
  • Base model precision: int8-quanto
  • Caption dropout probability: 0.1%

LyCORIS Config:

{
    "algo": "lora",
    "multiplier": 1.0,
    "linear_dim": 256,
    "linear_alpha": 256,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 256
            },
            "FeedForward": {
                "factor": 256
            }
        }
    }
}

Datasets

lejos-borges-dataset-images

  • Repeats: 7
  • Total number of images: 70
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights


def download_adapter(repo_id: str):
    import os
    from huggingface_hub import hf_hub_download
    adapter_filename = "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
    os.makedirs(path_to_adapter, exist_ok=True)
    hf_hub_download(
        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
    )

    return path_to_adapter_file
    
model_id = 'stabilityai/stable-diffusion-3.5-large'
adapter_repo_id = 'tekoaly4/lejos-borges-simpletuner-lora'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()

prompt = "cinematic product photography, a high-detail, realistic studio shot on a pristine white marble surface. A Borges Extra Virgin Olive Oil bottle (1L, green) stands prominently, with a bottle of Borges Natura Apple Cider (500ml, clear glass with golden liquid) positioned slightly behind it. The lighting is bright and diffused, creating soft shadows. The bottles are the sole focus of the image, with no other elements present. The composition is minimalist and sleek, emphasizing the form and packaging of the products."
negative_prompt = 'blurry, cropped, ugly'

## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=7.0,
).images[0]

model_output.save("output.png", format="PNG")
Downloads last month
16
Inference Examples
Examples
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for tekoaly4/lejos-borges-simpletuner-lora

Adapter
(351)
this model

Space using tekoaly4/lejos-borges-simpletuner-lora 1