Text Generation
Transformers
GGUF
Korean
TensorBlock
GGUF
morriszms's picture
Update README.md
5396d24 verified
metadata
language:
  - ko
datasets:
  - kyujinpy/OpenOrca-ko-v3
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
base_model: kyujinpy/Korean-OpenOrca-v3
tags:
  - TensorBlock
  - GGUF
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

kyujinpy/Korean-OpenOrca-v3 - GGUF

This repo contains GGUF format model files for kyujinpy/Korean-OpenOrca-v3.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Our projects

Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€
## Prompt template

Model file specification

Filename Quant type File Size Description
Korean-OpenOrca-v3-Q2_K.gguf Q2_K 4.521 GB smallest, significant quality loss - not recommended for most purposes
Korean-OpenOrca-v3-Q3_K_S.gguf Q3_K_S 5.270 GB very small, high quality loss
Korean-OpenOrca-v3-Q3_K_M.gguf Q3_K_M 5.903 GB very small, high quality loss
Korean-OpenOrca-v3-Q3_K_L.gguf Q3_K_L 6.454 GB small, substantial quality loss
Korean-OpenOrca-v3-Q4_0.gguf Q4_0 6.860 GB legacy; small, very high quality loss - prefer using Q3_K_M
Korean-OpenOrca-v3-Q4_K_S.gguf Q4_K_S 6.913 GB small, greater quality loss
Korean-OpenOrca-v3-Q4_K_M.gguf Q4_K_M 7.326 GB medium, balanced quality - recommended
Korean-OpenOrca-v3-Q5_0.gguf Q5_0 8.356 GB legacy; medium, balanced quality - prefer using Q4_K_M
Korean-OpenOrca-v3-Q5_K_S.gguf Q5_K_S 8.356 GB large, low quality loss - recommended
Korean-OpenOrca-v3-Q5_K_M.gguf Q5_K_M 8.596 GB large, very low quality loss - recommended
Korean-OpenOrca-v3-Q6_K.gguf Q6_K 9.946 GB very large, extremely low quality loss
Korean-OpenOrca-v3-Q8_0.gguf Q8_0 12.881 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Korean-OpenOrca-v3-GGUF --include "Korean-OpenOrca-v3-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Korean-OpenOrca-v3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'