Fine-tuned SmolLM Model

This model is a fine-tuned version of HuggingFaceTB/SmolLM2-1.7B-Instruct.

Training Details

  • Base Model: HuggingFaceTB/SmolLM2-1.7B-Instruct
  • Fine-tuning Method: LoRA (Low-Rank Adaptation)
  • Hardware: NVIDIA RTX 3050 (4GB VRAM)
  • Framework: PyTorch + Transformers + PEFT

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

# Load model
tokenizer = AutoTokenizer.from_pretrained("terrytaylorbonn/431_smollm-model")
model = AutoModelForCausalLM.from_pretrained("terrytaylorbonn/431_smollm-model")

# Generate text
messages = [{"role": "user", "content": "Your prompt here"}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=200)
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
print(response)

Training Configuration

  • Batch Size: 1 (with gradient accumulation)
  • Learning Rate: 2e-4
  • LoRA Rank: 16
  • LoRA Alpha: 32
  • Training Steps: Variable based on dataset

Limitations

This model inherits the limitations of the base model and may have additional biases from the fine-tuning data.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for terrytaylorbonn/431_smollm-model

Finetuned
(106)
this model