texasdave2/distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0210
- Validation Loss: 0.0570
- Train Precision: 0.9300
- Train Recall: 0.9394
- Train F1: 0.9347
- Train Accuracy: 0.9847
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 10530, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.1337 | 0.0643 | 0.9133 | 0.9295 | 0.9213 | 0.9817 | 0 |
0.0404 | 0.0550 | 0.9261 | 0.9413 | 0.9336 | 0.9846 | 1 |
0.0210 | 0.0570 | 0.9300 | 0.9394 | 0.9347 | 0.9847 | 2 |
Framework versions
- Transformers 4.33.1
- TensorFlow 2.13.0
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 66
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for texasdave2/distilbert-base-uncased-finetuned-ner
Base model
distilbert/distilbert-base-uncased