segformer-b1-finetuned-UBC

This model is a fine-tuned version of nvidia/segformer-b4-finetuned-ade-512-512 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6250
  • Mean Iou: 0.3060
  • Mean Accuracy: 0.5177
  • Overall Accuracy: 0.6022
  • Accuracy Road-trees-ocean: nan
  • Accuracy Residential: 0.7533
  • Accuracy Commercial: 0.4895
  • Accuracy Industrial: 0.6393
  • Accuracy Public: 0.4912
  • Accuracy Other: 0.2152
  • Iou Road-trees-ocean: 0.0
  • Iou Residential: 0.6788
  • Iou Commercial: 0.3656
  • Iou Industrial: 0.2652
  • Iou Public: 0.3602
  • Iou Other: 0.1662

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Road-trees-ocean Accuracy Residential Accuracy Commercial Accuracy Industrial Accuracy Public Accuracy Other Iou Road-trees-ocean Iou Residential Iou Commercial Iou Industrial Iou Public Iou Other
0.6615 1.0 112 0.7051 0.1920 0.3218 0.5703 nan 0.7995 0.6999 0.0002 0.1094 0.0 0.0 0.6690 0.3774 0.0002 0.1052 0.0
0.4892 2.0 224 0.4453 0.2012 0.3142 0.5312 nan 0.7007 0.6561 0.0 0.2144 0.0 0.0 0.6245 0.3895 0.0 0.1934 0.0
0.3549 3.0 336 0.4100 0.2273 0.3564 0.5065 nan 0.7146 0.2978 0.3118 0.4577 0.0 0.0 0.6335 0.2514 0.1735 0.3055 0.0
0.3597 4.0 448 0.4001 0.2534 0.4062 0.5525 nan 0.7658 0.3541 0.4291 0.4818 0.0 0.0 0.6590 0.2975 0.2454 0.3184 0.0
0.276 5.0 560 0.3985 0.2382 0.3652 0.5385 nan 0.6930 0.5632 0.2008 0.3588 0.0103 0.0 0.6399 0.3665 0.1302 0.2827 0.0102
0.2568 6.0 672 0.3932 0.2715 0.4139 0.5838 nan 0.7988 0.4944 0.3519 0.3776 0.0467 0.0 0.6785 0.3799 0.2135 0.3129 0.0440
0.2238 7.0 784 0.4032 0.2991 0.4681 0.5846 nan 0.7494 0.5426 0.5155 0.3801 0.1527 0.0 0.6745 0.3865 0.3042 0.3037 0.1257
0.1856 8.0 896 0.4345 0.2946 0.4942 0.5812 nan 0.7566 0.3599 0.6136 0.5516 0.1892 0.0 0.6851 0.2924 0.2887 0.3528 0.1489
0.1733 9.0 1008 0.4259 0.2993 0.4755 0.5946 nan 0.7494 0.5293 0.5092 0.4660 0.1238 0.0 0.6848 0.3785 0.2872 0.3398 0.1054
0.177 10.0 1120 0.4989 0.2675 0.4962 0.5674 nan 0.7871 0.2486 0.7673 0.5283 0.1495 0.0 0.6960 0.2170 0.2421 0.3289 0.1211
0.128 11.0 1232 0.4857 0.2926 0.5225 0.5677 nan 0.6727 0.4868 0.7228 0.4968 0.2335 0.0 0.6400 0.3525 0.2497 0.3547 0.1586
0.1277 12.0 1344 0.4589 0.3046 0.5037 0.6014 nan 0.7587 0.4364 0.5857 0.5713 0.1663 0.0 0.6857 0.3491 0.2877 0.3670 0.1382
0.1465 13.0 1456 0.4877 0.2978 0.5149 0.5791 nan 0.7151 0.4300 0.6773 0.5372 0.2151 0.0 0.6608 0.3373 0.2732 0.3567 0.1589
0.1692 14.0 1568 0.4828 0.3006 0.4966 0.5947 nan 0.7469 0.4576 0.5661 0.5380 0.1745 0.0 0.6808 0.3505 0.2721 0.3595 0.1407
0.1402 15.0 1680 0.5083 0.3008 0.5034 0.5905 nan 0.7414 0.4931 0.6033 0.4570 0.2224 0.0 0.6659 0.3629 0.2614 0.3504 0.1642
0.1815 16.0 1792 0.5092 0.2995 0.5242 0.5847 nan 0.7432 0.4522 0.6954 0.4245 0.3056 0.0 0.6767 0.3478 0.2400 0.3362 0.1965
0.1327 17.0 1904 0.5164 0.3064 0.5051 0.5940 nan 0.7289 0.5073 0.5805 0.5011 0.2077 0.0 0.6639 0.3757 0.2818 0.3643 0.1528
0.1045 18.0 2016 0.5242 0.3021 0.5083 0.6035 nan 0.7820 0.4367 0.6433 0.5077 0.1717 0.0 0.6898 0.3522 0.2736 0.3597 0.1375
0.0935 19.0 2128 0.5375 0.2995 0.5132 0.5826 nan 0.7114 0.4796 0.6702 0.5107 0.1942 0.0 0.6584 0.3477 0.2836 0.3558 0.1516
0.1029 20.0 2240 0.5384 0.2934 0.5002 0.5858 nan 0.7347 0.3958 0.6215 0.6049 0.1442 0.0 0.6786 0.3180 0.2778 0.3658 0.1203
0.1076 21.0 2352 0.5209 0.3030 0.4923 0.5998 nan 0.7554 0.4506 0.4999 0.5542 0.2013 0.0 0.6809 0.3515 0.2704 0.3588 0.1565
0.1118 22.0 2464 0.5442 0.2876 0.4962 0.5899 nan 0.7744 0.4817 0.6387 0.3802 0.2060 0.0 0.6798 0.3616 0.2201 0.3017 0.1627
0.0962 23.0 2576 0.5447 0.3073 0.5146 0.6054 nan 0.7627 0.4891 0.6101 0.4858 0.2255 0.0 0.6828 0.3689 0.2692 0.3511 0.1717
0.098 24.0 2688 0.5635 0.2999 0.5139 0.5964 nan 0.7423 0.4949 0.6486 0.4872 0.1964 0.0 0.6779 0.3582 0.2564 0.3482 0.1588
0.1051 25.0 2800 0.5509 0.3002 0.5153 0.5976 nan 0.7759 0.4163 0.6716 0.4958 0.2169 0.0 0.6932 0.3270 0.2636 0.3516 0.1657
0.1073 26.0 2912 0.5476 0.3103 0.4987 0.6083 nan 0.7506 0.5518 0.4992 0.4737 0.2181 0.0 0.6793 0.3950 0.2688 0.3563 0.1627
0.1398 27.0 3024 0.5794 0.3043 0.5146 0.5989 nan 0.7554 0.4470 0.6395 0.5288 0.2025 0.0 0.6811 0.3501 0.2817 0.3538 0.1591
0.1013 28.0 3136 0.5661 0.3042 0.5002 0.6027 nan 0.7400 0.5420 0.5505 0.4905 0.1781 0.0 0.6683 0.3882 0.2677 0.3551 0.1456
0.0693 29.0 3248 0.5628 0.3096 0.5212 0.6097 nan 0.7531 0.5093 0.6121 0.5100 0.2214 0.0 0.6836 0.3813 0.2634 0.3599 0.1693
0.0954 30.0 3360 0.5839 0.2934 0.5060 0.5921 nan 0.7682 0.4295 0.6672 0.4823 0.1827 0.0 0.6774 0.3386 0.2436 0.3560 0.1446
0.0792 31.0 3472 0.5779 0.3021 0.5069 0.6012 nan 0.7463 0.5260 0.5756 0.4653 0.2212 0.0 0.6793 0.3729 0.2372 0.3542 0.1692
0.0842 32.0 3584 0.5680 0.3155 0.5169 0.6178 nan 0.7789 0.5031 0.5572 0.4906 0.2548 0.0 0.6903 0.3851 0.2612 0.3726 0.1839
0.0778 33.0 3696 0.5928 0.3053 0.5157 0.6025 nan 0.7550 0.4850 0.6293 0.4979 0.2115 0.0 0.6814 0.3648 0.2582 0.3644 0.1630
0.0681 34.0 3808 0.5967 0.3054 0.5124 0.6045 nan 0.7600 0.4790 0.6243 0.5157 0.1831 0.0 0.6832 0.3673 0.2687 0.3655 0.1480
0.1204 35.0 3920 0.6043 0.3051 0.5284 0.6009 nan 0.7611 0.4233 0.7087 0.5413 0.2079 0.0 0.6865 0.3399 0.2723 0.3688 0.1631
0.063 36.0 4032 0.5979 0.3065 0.5126 0.6024 nan 0.7561 0.4720 0.6008 0.5127 0.2210 0.0 0.6801 0.3614 0.2639 0.3652 0.1682
0.0861 37.0 4144 0.6206 0.3025 0.5210 0.5957 nan 0.7405 0.4709 0.6698 0.5083 0.2151 0.0 0.6742 0.3580 0.2621 0.3568 0.1638
0.0716 38.0 4256 0.6022 0.3003 0.5082 0.5999 nan 0.7575 0.4981 0.6141 0.4636 0.2075 0.0 0.6791 0.3709 0.2434 0.3476 0.1610
0.0698 39.0 4368 0.6149 0.3055 0.5139 0.6070 nan 0.7747 0.4750 0.6323 0.4872 0.2002 0.0 0.6845 0.3681 0.2625 0.3598 0.1578
0.0966 40.0 4480 0.6190 0.3050 0.5135 0.6049 nan 0.7670 0.4782 0.6261 0.4913 0.2051 0.0 0.6819 0.3670 0.2601 0.3618 0.1594
0.0792 41.0 4592 0.6239 0.3038 0.5170 0.5996 nan 0.7436 0.4801 0.6419 0.5223 0.1970 0.0 0.6773 0.3643 0.2615 0.3643 0.1555
0.0847 42.0 4704 0.6188 0.3061 0.5182 0.6043 nan 0.7546 0.4909 0.6345 0.5010 0.2099 0.0 0.6802 0.3715 0.2567 0.3647 0.1633
0.0699 43.0 4816 0.6188 0.3070 0.5141 0.6078 nan 0.7694 0.4687 0.6024 0.5124 0.2177 0.0 0.6868 0.3643 0.2598 0.3639 0.1671
0.073 44.0 4928 0.6249 0.3042 0.5186 0.5993 nan 0.7432 0.4952 0.6594 0.4987 0.1966 0.0 0.6770 0.3678 0.2628 0.3620 0.1558
0.0707 45.0 5040 0.6273 0.3066 0.5247 0.5990 nan 0.7430 0.4767 0.6635 0.5071 0.2332 0.0 0.6734 0.3602 0.2637 0.3665 0.1759
0.0716 46.0 5152 0.6314 0.3074 0.5220 0.6055 nan 0.7554 0.4911 0.6483 0.5007 0.2147 0.0 0.6818 0.3675 0.2633 0.3644 0.1672
0.1249 47.0 5264 0.6242 0.3081 0.5194 0.6054 nan 0.7627 0.4854 0.6419 0.4876 0.2194 0.0 0.6810 0.3687 0.2679 0.3632 0.1674
0.0772 48.0 5376 0.6427 0.3065 0.5249 0.6022 nan 0.7516 0.4817 0.6720 0.4979 0.2215 0.0 0.6789 0.3633 0.2653 0.3622 0.1696
0.0914 49.0 5488 0.6323 0.3067 0.5234 0.6040 nan 0.7571 0.4809 0.6677 0.4985 0.2127 0.0 0.6816 0.3634 0.2673 0.3631 0.1649
0.0679 50.0 5600 0.6250 0.3060 0.5177 0.6022 nan 0.7533 0.4895 0.6393 0.4912 0.2152 0.0 0.6788 0.3656 0.2652 0.3602 0.1662

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
64M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for tferhan/segformer-b1-finetuned-UBC

Finetuned
(9)
this model
Finetunes
1 model