segformer-b4-finetuned-UBC

This model is a fine-tuned version of nvidia/segformer-b4-finetuned-ade-512-512 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9831
  • Mean Iou: 0.3535
  • Mean Accuracy: 0.5149
  • Overall Accuracy: 0.6482
  • Accuracy Background: nan
  • Accuracy Residential: 0.8665
  • Accuracy Commercial: 0.5016
  • Accuracy Industrial: 0.5567
  • Accuracy Public: 0.4487
  • Accuracy Other: 0.2007
  • Iou Background: nan
  • Iou Residential: 0.7569
  • Iou Commercial: 0.3413
  • Iou Industrial: 0.2314
  • Iou Public: 0.2827
  • Iou Other: 0.1552

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Residential Accuracy Commercial Accuracy Industrial Accuracy Public Accuracy Other Iou Background Iou Residential Iou Commercial Iou Industrial Iou Public Iou Other
0.6613 1.0 112 1.0186 0.2282 0.3923 0.6080 nan 0.7908 0.6591 0.1395 0.3716 0.0005 0.0 0.7023 0.3610 0.0698 0.2355 0.0005
0.6229 2.0 224 0.9143 0.3063 0.4309 0.6547 nan 0.8927 0.4666 0.1872 0.6030 0.0052 nan 0.7356 0.3453 0.0835 0.3617 0.0051
0.474 3.0 336 0.9810 0.3225 0.4892 0.6415 nan 0.8693 0.3502 0.5204 0.6787 0.0273 nan 0.7447 0.2791 0.2138 0.3482 0.0267
0.416 4.0 448 1.0021 0.3657 0.5521 0.6573 nan 0.8784 0.4672 0.7352 0.4826 0.1971 nan 0.7372 0.3384 0.2748 0.3262 0.1518
0.3421 5.0 560 1.0451 0.3722 0.5476 0.6509 nan 0.8677 0.4221 0.6045 0.5012 0.3425 nan 0.7387 0.3117 0.2801 0.3251 0.2053
0.2723 6.0 672 1.2387 0.3482 0.4987 0.6411 nan 0.8439 0.5259 0.4330 0.4398 0.2511 nan 0.7547 0.3376 0.1830 0.2817 0.1840
0.2719 7.0 784 1.1848 0.3489 0.4784 0.6576 nan 0.8764 0.5764 0.3244 0.4185 0.1962 nan 0.7348 0.3760 0.1931 0.2871 0.1537
0.1785 8.0 896 1.2896 0.3686 0.5563 0.6438 nan 0.8694 0.4545 0.7179 0.3925 0.3472 nan 0.7536 0.3200 0.3063 0.2641 0.1988
0.1309 9.0 1008 1.3525 0.3515 0.4856 0.6480 nan 0.8511 0.4882 0.3594 0.5495 0.1796 nan 0.7557 0.3365 0.2199 0.3031 0.1426
0.1106 10.0 1120 1.4989 0.3494 0.5203 0.6379 nan 0.8556 0.3745 0.5852 0.5822 0.2041 nan 0.7496 0.2844 0.2445 0.3171 0.1513
0.1281 11.0 1232 1.5308 0.3652 0.5315 0.6550 nan 0.8469 0.5610 0.5537 0.4390 0.2569 nan 0.7555 0.3650 0.2274 0.3013 0.1770
0.0942 12.0 1344 1.5054 0.3547 0.5125 0.6486 nan 0.8600 0.4925 0.5328 0.4894 0.1876 nan 0.7544 0.3393 0.2390 0.2960 0.1450
0.1254 13.0 1456 1.5499 0.3497 0.5026 0.6400 nan 0.8533 0.5087 0.4680 0.4197 0.2634 nan 0.7487 0.3391 0.2159 0.2656 0.1794
0.1043 14.0 1568 1.5838 0.3543 0.5093 0.6513 nan 0.8712 0.4877 0.4996 0.4779 0.2101 nan 0.7567 0.3410 0.2234 0.2991 0.1514
0.0841 15.0 1680 1.6761 0.3677 0.5503 0.6507 nan 0.8639 0.4700 0.7035 0.4673 0.2470 nan 0.7547 0.3283 0.2825 0.3011 0.1716
0.0765 16.0 1792 1.7000 0.3558 0.5328 0.6526 nan 0.9054 0.3970 0.6789 0.4872 0.1955 nan 0.7523 0.3063 0.2699 0.3055 0.1451
0.0712 17.0 1904 1.8459 0.3587 0.5353 0.6467 nan 0.8638 0.4774 0.6618 0.4534 0.2200 nan 0.7542 0.3283 0.2581 0.2895 0.1635
0.0819 18.0 2016 1.7872 0.3544 0.5048 0.6563 nan 0.8925 0.5231 0.4922 0.4012 0.2150 nan 0.7600 0.3556 0.2259 0.2710 0.1596
0.0622 19.0 2128 1.8449 0.3649 0.5505 0.6451 nan 0.8498 0.4761 0.6958 0.4564 0.2742 nan 0.7556 0.3268 0.2658 0.2930 0.1830
0.0353 20.0 2240 1.8546 0.3511 0.5185 0.6412 nan 0.8546 0.4634 0.5779 0.4835 0.2131 nan 0.7545 0.3182 0.2255 0.2945 0.1626
0.0302 21.0 2352 1.8425 0.3545 0.5222 0.6468 nan 0.8731 0.4495 0.5990 0.4813 0.2082 nan 0.7563 0.3200 0.2444 0.2939 0.1580
0.0523 22.0 2464 1.9309 0.3565 0.5288 0.6450 nan 0.8509 0.4838 0.6172 0.4812 0.2110 nan 0.7561 0.3311 0.2390 0.2947 0.1618
0.0374 23.0 2576 1.9155 0.3529 0.5157 0.6481 nan 0.8688 0.4734 0.5491 0.4763 0.2110 nan 0.7528 0.3317 0.2218 0.2983 0.1597
0.0466 24.0 2688 1.9691 0.3515 0.5178 0.6437 nan 0.8645 0.4620 0.5759 0.4724 0.2140 nan 0.7538 0.3246 0.2296 0.2893 0.1599
0.0243 25.0 2800 1.9683 0.3565 0.5246 0.6461 nan 0.8617 0.4950 0.5975 0.4406 0.2284 nan 0.7571 0.3355 0.2414 0.2802 0.1684
0.0287 26.0 2912 1.9427 0.3552 0.5152 0.6491 nan 0.8651 0.5151 0.5380 0.4333 0.2246 nan 0.7555 0.3468 0.2270 0.2802 0.1668
0.0575 27.0 3024 2.0501 0.3538 0.5194 0.6471 nan 0.8583 0.5049 0.5777 0.4570 0.1992 nan 0.7564 0.3415 0.2293 0.2877 0.1538
0.0523 28.0 3136 1.9851 0.3553 0.5166 0.6489 nan 0.8639 0.5234 0.5550 0.4250 0.2156 nan 0.7565 0.3483 0.2329 0.2759 0.1629
0.0243 29.0 3248 1.9891 0.3533 0.5148 0.6480 nan 0.8676 0.5087 0.5591 0.4325 0.2064 nan 0.7561 0.3427 0.2312 0.2779 0.1584
0.0514 30.0 3360 1.9831 0.3535 0.5149 0.6482 nan 0.8665 0.5016 0.5567 0.4487 0.2007 nan 0.7569 0.3413 0.2314 0.2827 0.1552

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
4
Safetensors
Model size
64M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for tferhan/segformer-b4-finetuned-UBC

Finetuned
(9)
this model